Chronic ethanol consumption increases mitochondrial oxidative stress and sensitivity to form the mitochondrial permeability transition pore (MPTP). The mechanism responsible for increased MPTP sensitivity in ethanol-exposed mitochondria and its relation to mitochondrial Ca(2+) handling is unknown. Herein, we investigated whether increased sensitivity to MPTP induction in liver mitochondria from ethanol-fed rats compared with controls is related to an ethanol-dependent change in mitochondrial Ca(2+) accumulation. Liver mitochondria were isolated from control and ethanol-fed rats, and Ca(2+)-mediated induction of the MPTP and mitochondrial Ca(2+) retention capacity were measured. Levels of proposed MPTP proteins as well as select pro- and antiapoptotic proteins were measured along with gene expression. We observed increased steatosis and TUNEL-stained nuclei in liver of ethanol-fed rats compared with controls. Liver mitochondria from ethanol-fed rats had increased levels of proapoptotic Bax protein and reduced Ca(2+) retention capacity compared with control mitochondria. We observed increased cyclophilin D (Cyp D) gene expression in liver and protein in mitochondria from ethanol-fed animals compared with controls, whereas there was no change in the adenine nucleotide translocase and voltage-dependent anion channel. Together, these results suggest that enhanced sensitivity to Ca(2+)-mediated MPTP induction may be due, in part, to higher Cyp D levels in liver mitochondria from ethanol-fed rats. Therefore, therapeutic strategies aimed at normalizing Cyp D levels may be beneficial in preventing ethanol-dependent mitochondrial dysfunction and liver injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957342 | PMC |
http://dx.doi.org/10.1152/ajpgi.00246.2010 | DOI Listing |
Mol Biol Cell
December 2024
Department of Biology, The Catholic University of America, Washington, DC, 20064.
Although peroxisomes are known to oxidize ethanol, metabolize lipids, and regulate oxidative stress, they remain understudied in the context of ethanol-induced liver injury. We examined peroxisome early responses to alcohol-induced oxidative stress and lipid overload. Analysis of peroxisomes labeled with catalase, an ethanol oxidizing enzyme, or ABCD3, a fatty acid transporter, revealed that distinct peroxisome populations differentially respond to ethanol.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
November 2024
Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA.
Background: The earliest manifestation of alcohol-associated liver disease (ALD) is steatosis characterized by deposition of fat in specialized organelles called lipid droplets (LDs). While alcohol administration causes a rise in LD numbers in the hepatocytes, little is known regarding their characteristics that allow their accumulation and size to increase. The aim of the present study is to gain insights into underlying pathophysiological mechanisms by investigating the ethanol-induced changes in hepatic LD proteome as a function of LD size.
View Article and Find Full Text PDFBiomed Pharmacother
May 2024
Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA. Electronic address:
Fatty liver is the earliest response of the liver to excessive alcohol consumption. Previously we identified that chronic alcohol administration increases levels of stomach-derived hormone, ghrelin, which by reducing circulating insulin levels, ultimately contributes to the development of alcohol-associated liver disease (ALD). In addition, ghrelin directly promotes fat accumulation in hepatocytes by enhancing de novo lipogenesis.
View Article and Find Full Text PDFBiol Pharm Bull
April 2024
Department of General Medicine and Emergency Care, Toho University School of Medicine.
The C3 carbon of glucose molecules becomes the C1 carbon of pyruvate molecules during glycolysis, and the C1 and C2 carbons of glucose molecules are metabolized in the tricarboxylic acid (TCA) cycle. Utilizing this position-dependent metabolism of C atoms in glucose molecules, [1-C], [2-C], and [3-C]glucose breath tests are used to evaluate glucose metabolism. However, the effects of chronic ethanol consumption remain incompletely understood.
View Article and Find Full Text PDFAppl Biosci (Basel)
June 2023
Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA.
Central nervous system (CNS) white matter pathologies accompany many diseases across the lifespan, yet their biochemical bases, mechanisms, and consequences have remained poorly understood due to the complexity of myelin lipid-based research. However, recent advances in matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) have minimized or eliminated many technical challenges that previously limited progress in CNS disease-based lipidomic research. MALDI-IMS can be used for lipid identification, semi-quantification, and the refined interpretation of histopathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!