Structural changes undergone by Escherichia coli cell envelope membranes under the conditions of electrically induced gene (DNA) transfer (exponential pulse of about 13 kV/cm, tau = 5 ms) were studied by freeze-fracture electron microscopy. Special device similar to that of Stenger and Hui [1986) J. Membr. Biol. 93, 43-53), that allowed cryofixation of samples almost simultaneously with application of electric pulse, was employed to examine the cells within a short time (less than or equal to 1 s) after the pulse. Extensive blebbing of cells was observed immediately after the pulse. At later times (30-40 s after the pulse) blebbing was not detected, instead infrequent cellular membrane fusion and formation of large membrane 'opening' or pores were observed. An attempt to relate the observed membrane changes with cellular viability and permeability to exogenous DNA failed. Challenge of cells with a plasmid DNA 10 s after the pulse application resulted in a dramatic loss (at least four orders of magnitude) of the number of transformants compared to cells pulsed in the presence of DNA. On the other hand the results on additional pulsing of cell prior to the main electrotransformation procedure suggested that the life-time of membrane defects is at least no less than 2 min. Possible ways to reconcile the results are suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2736(91)90245-4DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
electron microscopy
8
pulse
6
coli membranes
4
membranes electrotransformation
4
electrotransformation electron
4
microscopy study
4
study structural
4
structural changes
4
changes undergone
4

Similar Publications

The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in have been identified and characterized decades ago.

View Article and Find Full Text PDF

A Fast-Pass, Desorption Electrospray Ionization Mass Spectrometry Strategy for Untargeted Metabolic Phenotyping.

J Am Soc Mass Spectrom

January 2025

Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States.

Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.

View Article and Find Full Text PDF

Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.

View Article and Find Full Text PDF

Waterborne bacteria pose a serious hazard to human health, hence a precise detection method is required to identify them. A photonic crystal fiber sensor that takes into account the dangers of aquatic bacteria has been suggested, and its optical characteristics in the THz range have been quantitatively assessed. The PCF sensor was designed and examined as computed in Comsol Multiphysics, a program in which uses the method of "Finite Element Method" (FEM).

View Article and Find Full Text PDF

In the leucine (Leu) biosynthesis pathway, homeostasis is achieved through a feedback regulatory mechanism facilitated by the binding of the end-product Leu at the C-terminal regulatory domain of the first committed enzyme, isopropylmalate synthase (IPMS). In vitro studies have shown that removing the regulatory domain abolishes the feedback regulation on plant IPMS while retaining its catalytic activity. However, the physiological consequences and underlying molecular regulation on Leu flux upon removing the IPMS C-terminal domain remain to be explored in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!