Alterations of specific metabolic pathways can be used as sensitive indicators of toxicity by chemicals and can give valuable information on the mechanism(s) involved. Short-term effects of lead on hepatic haem biosynthesis were studied in an in vitro system. Primary cultures of adult rat hepatocytes were exposed for 24-48 hr to lead (0.024-3.6 mm), and excreted and intracellular porphyrins were measured in untreated and lead-treated cultures. Cytotoxicity, as estimated by enzyme leakage, and morphological alterations were also evaluated. Control hepatocytes produced porphyrins at a rate of 387 pmol/mg cellular protein/day. Most of the released and intracellular porphyrins were protoporphyrins, although uro- and coproporphyrins were also detected in lower amounts. After 24 hr of exposure to 0.1-3.6 mm Pb(2+) , excreted porphyrins decreased by 24-92% and intracellular porphyrins by 36-60%, while 48 hr of exposure to 0.024-3.6 mm Pb(2+) caused a progressive reduction of 77-97% in porphyrin excretion and of 49-67% in intracellular porphyrins. Lead exposure also produced a differential decrease of proto-, copro- and uro-porphyrin excretion. These lead effects can be explained mainly by inhibition of the enzyme 5-aminolaevulinate dehydratase, resulting in a decreased monopyrrole supply for porphyrin biosynthesis, and probably by inhibition of the enzyme uroporphyrinogen decarboxylase. Morphological alterations and enzyme leakage were detected only after 24 hr of exposure to 2.4 mm and 48 hr of exposure to 3.6 mm Pb(2+), respectively. The results show that changes in porphyrin production, and particularly in their excretion, in cultured rat hepatocytes are useful indicators of lead toxicity, since they are more sensitive than enzyme leakage and can give preliminary information on the enzyme(s) that could be affected. They also suggest the potential benefits of the use of this method for the evaluation of compounds that alter haem biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0887-2333(96)00043-4 | DOI Listing |
Int J Mol Sci
December 2024
Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
Mutations in the SLC25A38 gene are responsible for the second most common form of congenital sideroblastic anemia (CSA), a severe condition for which no effective treatment exists. We developed and characterized a K562 erythroleukemia cell line with markedly reduced expression of the SLC25A38 protein (A38-low cells). This model successfully recapitulated the main features of CSA, including reduced heme content and mitochondrial respiration, increase in mitochondrial iron, ROS levels and sensitivity to oxidative stress.
View Article and Find Full Text PDFBiomolecules
November 2024
Department of Biology, Washington University, St. Louis, MO 63146, USA.
Mitochondrial holocytochrome c synthase (HCCS) is an essential protein in assembling cytochrome c (cyt c) of the electron transport system. HCCS binds heme and covalently attaches the two vinyls of heme to two cysteine thiols of the cyt c CXXCH motif. Human HCCS recognizes both cyt c and cytochrome c of complex III (cytochrome bc).
View Article and Find Full Text PDFTheranostics
January 2025
Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.
View Article and Find Full Text PDFBiomater Sci
December 2024
A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Bld. 1 Vavilov Street, 119334 Moscow, Russian Federation.
The tetrapyrrolic macrocycle as a scaffold for various chemical modifications provides broad opportunities for the preparation of complex multifunctional conjugates suitable for binary antitumor therapies. Typically, illumination with monochromatic light triggers the photochemical generation of reactive oxygen species (ROS) (photodynamic effect). However, more therapeutically valuable effects can be achieved upon photoactivation of tetrapyrrole derivatives.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland.
Difluorinated sulfonamide porphyrin (FPGly) and bacteriochlorin (FBGly), modified by glycine residues, were synthesized and evaluated for photodynamic therapy (PDT). F₂PGly exhibits superior stability and singlet oxygen generation efficiency but features a low-intensity band in the red range (λ = 639 nm). In contrast, FBGly shows a favorable, red-shifted absorption spectrum (λ = 746 nm) that aligns well with phototherapeutic window, facilitating deeper tissue penetration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!