Manganese superoxide dismutase versus p53: the mitochondrial center.

Ann N Y Acad Sci

Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA.

Published: July 2010

Mitochondria are important sites of myriad metabolic activities. The actions of mitochondria must be carefully synchronized with other processes in the cell to maintain cellular homeostasis. Interorganellar communication between mitochondria and the nucleus is key for coordination of these cellular functions. Numerous signaling proteins and transcription factors are affected by reactive oxygen species and aid interorganellar communication. p53 is an important tumor suppressing protein that regulates many cellular activities, such as cell cycle regulation, DNA repair, and programmed cell death. p53 carries out these functions through both transcription-dependent and transcription-independent routes at mitochondria and the nucleus. Manganese superoxide dismutase (MnSOD), a p53-regulated gene that is a vital antioxidant enzyme localized in the matrix of mitochondria, scavenges reactive oxygen species. Recent studies suggest that mitochondria can regulate p53 activity and that assaults on the cell that affect mitochondrial ROS production and mitochondrial function can influence p53 activity. Cross-talk between mitochondria and p53 is important in normal cellular functions, and a breakdown in communication among mitochondria, p53, and the nucleus may have serious consequences in disease development.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2010.05612.xDOI Listing

Publication Analysis

Top Keywords

manganese superoxide
8
superoxide dismutase
8
mitochondria
8
interorganellar communication
8
communication mitochondria
8
mitochondria nucleus
8
cellular functions
8
reactive oxygen
8
oxygen species
8
p53 activity
8

Similar Publications

Cytotoxic ROS-Consuming Mn(III) Synzymes: Structural Influence on Their Mechanism of Action.

Int J Mol Sci

December 2024

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.

ROS (i.e., reactive oxygen species) scavenging is a key function of various Mn-based enzymes, including superoxide dismutases (SODs) and catalases, which are actively linked to oxidative stress-related diseases.

View Article and Find Full Text PDF

The smartphone-assisted sensing platform based on manganese dioxide nanozymes for the specific detection and degradation of hydroquinone.

J Hazard Mater

January 2025

Institute of Environmental Science, Shanxi University, Wucheng No. 92, rd, Taiyuan, Shanxi, PR China. Electronic address:

Hydroquinone (HQ) is a prevalent pollutant in aquatic environments, posing significant risks to ecosystems and human health. Practical methods for the simultaneous detection and degradation of HQ are essential. To address this requirement, a dual-mode detection and degradation strategy has been developed utilizing designed nanozymes (DM) consisting of a porous SiO core and MnO shell.

View Article and Find Full Text PDF

Mechanisms of Aluminum Toxicity Impacting Root Growth in Shatian Pomelo.

Int J Mol Sci

December 2024

Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.

Aluminum (Al) toxicity in acidic soils poses significant challenges to crop growth and development. However, the response mechanism of Shatian pomelo ( 'Shatian Yu') roots to Al toxicity remains poorly understood. This study employed root phenotype analysis, physiological response index measurement, root transcriptome analysis, and quantitative PCR (qPCR) validation to investigate the effects of Al toxicity on Shatian pomelo roots.

View Article and Find Full Text PDF

White tea has been scientifically proven to exhibit positive biological effects in combating chronic diseases, including cancer, metabolic syndrome, etc. Nevertheless, the anti-aging activity and mechanism of white tea on organisms exposed to a high-fat diet remain unexplored. Herein, we prepared a white tea aqueous extract (WTAE) from white peony in Fuding and assessed its in vivo antioxidant and anti-aging effects by employing a senescence model induced by lard, delving into the underlying molecular mechanisms through which the WTAE contributes to lifespan improvement.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are double-edged swords in biological systems-they are essential for normal cellular functions but can cause damage when accumulated due to oxidative stress. Manganese superoxide dismutase (MnSOD), located in the mitochondrial matrix, is a key enzyme that neutralizes superoxide radicals (O), maintaining cellular redox balance and integrity. This review examines the development and therapeutic potential of MnSOD mimetics-synthetic compounds designed to replicate MnSOD's antioxidant activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!