Distribution of four viruses in single and mixed infections within infected watermelon plants in Florida.

Phytopathology

United States Department of Agriculture, Fort Pierce, FL, USA.

Published: November 2010

Whitefly-transmitted Squash vein yellowing virus (SqVYV) and Cucurbit leaf crumple virus (CuLCrV) and aphid-transmitted Papaya ringspot virus type W (PRSV-W) have had serious impact on watermelon production in southwest and west-central Florida in the past 5 years. Tissue-blot nucleic acid hybridization assays were developed for simple, high-throughput detection of these three viruses as well as Cucurbit yellow stunting disorder virus (CYSDV), which was first reported in Florida in 2008. To determine virus distribution within plants, we collected 80 entire plants just before or during the harvest period in a systematic sample, 20 each on 11 April, 18 April, 26 April, and 3 May 2007, from a fruiting commercial watermelon field near Immokalee, FL showing symptoms of infection by SqVYV, CuLCrV, and PRSV-W and, possibly, CYSDV. This was followed by a sampling of five plants collected at harvest showing symptoms of virus infection on 11 October 2007 in a different commercial planting located in Duette, FL. Tissue prints were made from cross sections of watermelon plants from the crowns through the tips at 0.6-m intervals on nylon membranes and nucleic acid hybridization assays were used for virus detection. Results from testing crown tissue showed that SqVYV, CuLCrV, and PRSV-W were present in ≈37, 44, and 54%, respectively, of the 80 plants collected over the four sampling dates from the first field. For individual vines diagnosed with SqVYV, the distribution of SqVYV in vine tissue decreased proportionately with distance from the crown. The probability of detecting SqVYV was 70% at the base of the vine compared with 23% at the tip of the vine. In contrast, CuLCrV tended to be more evenly distributed throughout the plant, with ≈10% higher probability of detection at the growing tip relative to the crown of the plant. The distribution of PRSV-W resembled that of SqVYV but with ≈20% higher probability of detection at the tip of the vine. Similar trends were detected in the smaller sampling; however, CYSDV was also detected in three of the plants. Overall, the results indicated that SqVYV and PRSV-W were distributed differently than CuLCrV in watermelon plants, and this difference has implications on how samples should be collected and may affect vector acquisition and transmission of these viruses.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-01-10-0018DOI Listing

Publication Analysis

Top Keywords

watermelon plants
12
plants collected
12
plants
8
sqvyv
8
nucleic acid
8
acid hybridization
8
hybridization assays
8
april april
8
showing symptoms
8
sqvyv culcrv
8

Similar Publications

Complex traits influenced by multiple genes pose challenges for marker-assisted selection (MAS) in breeding. Genomic selection (GS) is a promising strategy for achieving higher genetic gains in quantitative traits by stacking favorable alleles into elite cultivars. Resistance to Fusarium oxysporum f.

View Article and Find Full Text PDF

In watermelon (Citrullus lanatus), lesion mimic is a rare, valuable trait that can be used by breeders for selection at early growth stages. In this study, we tested a seven-generation family to determine the inheritance and genetic basis of this trait. As revealed by analysis of the lesion mimic mutant clalm, this trait is controlled by a single dominant gene.

View Article and Find Full Text PDF

Snakebites present a significant health risk in the Sahara, where access to modern medical facilities is limited, leading local populations to rely on traditional remedies. The medicinal plants used by indigenous communities in the Oued Righ region of the Northern Algerian Sahara are vital for treating envenomation from snakebites. This study provides an ethnobotanical inventory of medicinal plants used by local communities in the Oued Righ region for snakebite treatment and evaluates their therapeutic potential.

View Article and Find Full Text PDF

Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology.

View Article and Find Full Text PDF

Identification of Candidate Genes for Green Rind Color in Watermelon.

Plants (Basel)

January 2025

Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

The color of the rind is one of the most crucial agronomic characteristics of watermelon ( L.). Its genetic analysis was conducted to provide the identification of genes regulating rind color and improving the quality of watermelon appearance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!