Emergence of equilibrium thermodynamic properties in quantum pure states. I. Theory.

J Chem Phys

Department of Chemical Science, University of Padova, Via Marzolo 1, Padova 35131, Italy.

Published: July 2010

Investigation on foundational aspects of quantum statistical mechanics recently entered a renaissance period due to novel intuitions from quantum information theory and to increasing attention on the dynamical aspects of single quantum systems. In the present contribution a simple but effective theoretical framework is introduced to clarify the connections between a purely mechanical description and the thermodynamic characterization of the equilibrium state of an isolated quantum system. A salient feature of our approach is the very transparent distinction between the statistical aspects and the dynamical aspects in the description of isolated quantum systems. Like in the classical statistical mechanics, the equilibrium distribution of any property is identified on the basis of the time evolution of the considered system. As a consequence equilibrium properties of quantum system appear to depend on the details of the initial state due to the abundance of constants of the motion in the Schrodinger dynamics. On the other hand the study of the probability distributions of some functions, such as the entropy or the equilibrium state of a subsystem, in statistical ensembles of pure states reveals the crucial role of typicality as the bridge between macroscopic thermodynamics and microscopic quantum dynamics. We shall consider two particular ensembles: the random pure state ensemble and the fixed expectation energy ensemble. The relation between the introduced ensembles, the properties of a given isolated system, and the standard quantum statistical description are discussed throughout the presentation. Finally we point out the conditions which should be satisfied by an ensemble in order to get meaningful thermodynamical characterization of an isolated quantum system.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3455998DOI Listing

Publication Analysis

Top Keywords

isolated quantum
12
quantum system
12
quantum
10
properties quantum
8
pure states
8
quantum statistical
8
statistical mechanics
8
dynamical aspects
8
quantum systems
8
equilibrium state
8

Similar Publications

The isolation of nucleophilic boron bases has led to a paradigm shift in boron chemistry. Previous studies of the bis(carbene) borylene complexes revealed that these compounds possess strong donor abilities, and their reaction inertness is due to the large steric hindrance between boron reagents and reactant. In the present study, we have theoretically studied the [(N)BX] and [(N)BX] compounds (X = H, F, Cl, Br).

View Article and Find Full Text PDF

The fungal genus Fusarium is a treasure-trove of structurally diverse secondary metabolites, contributed greatly by marine-derived strains. A new cedrane sesquiterpene, fusacedrol (1), and a new fusarin member, fusarin M (2), were isolated from F. graminearum 12Ⅱ2N that was isolated as an endophyte from the marine brown alga Sargassum sp.

View Article and Find Full Text PDF

Endophytic fungi possess a unique ability to produce abundant secondary metabolites, which play an active role in the growth and development of host plants. In this study, chemical investigations on the endophytic fungus TE-739D derived from the cultivated tobacco ( L.) afforded two new polyketide derivatives, namely japoniones A () and B (), as well as four previously reported compounds -.

View Article and Find Full Text PDF

Triplet-ground-state nonalternant nanographene with high stability and long spin lifetimes.

Nat Commun

January 2025

Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Hong Kong, China.

High-spin carbon-based polyradicals exhibit significant potential for applications in quantum information storage and sensing; however, their practical application is hampered by limited structural diversity and chemical instability. Here, we report a straightforward synthetic and isolation method for synthesizing a nonalternant nanographene (1) with a triplet ground state. Moving beyond the classic m-xylylene scaffold for high-spin organic molecules, seven-five-seven (7-5-7)-membered rings are introduced to create stable high-spin diradicals with half-lives (t) as long as 101 days.

View Article and Find Full Text PDF

Aromatic Polyketides from a Marine-Derived Streptomyces Species.

Chem Biodivers

January 2025

Ocean University of China, School of Medicine and Pharmacy, 5 yushan road, shinan district, 266003, Qingdao, CHINA.

Three new naphthalene derivatives, strepthalenes A-C (1-3), and the known analogue (S)-DNPA (4), together with six previously reported anthraquinones (5-10), were isolated from the marine-derived Streptomyces sp. OUCMDZ-4182. Their structures were elucidated by detailed spectroscopic analysis and quantum chemical calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!