[Study on optical energy transmission in biotic tissues by Monte Carlo method].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

BMlERI, School of Control Science and Engineering, Shandong University, Jinan 250061, China.

Published: June 2010

Biotic tissues are a kind of highly scattering random media; studies on laser light propagation in biotic tissues play an important role in bio-medical diagnostics and therapeutics. The propagation and distribution of infinitely narrow photon beam in tissues are simulated by Monte Carlo method in this paper. Also presented are the energy distribution with regard to depths, light distribution in tissues, reflection and transmittance on the upper and lower surface. The optical parameters adopted in this study are g, albedo and microa, which have influence on energy distribution. The results show: The energy distribution decreases more quickly with the increase of depths and reveals a peak value close to the surface; g factor plays an important part in the lost energy on the upper surface and lower surface; the decrease of g factor causes weaking of the forward moving ability, so the penetration depth becomes smaller and the energy becomes dispersives variation of albedo has distinct effect on the shallow and deep tissues.

Download full-text PDF

Source

Publication Analysis

Top Keywords

biotic tissues
12
energy distribution
12
monte carlo
8
lower surface
8
energy
6
tissues
6
distribution
5
[study optical
4
optical energy
4
energy transmission
4

Similar Publications

Soil salinization poses a significant ecological and environmental challenge both in China and across the globe. Plant growth-promoting rhizobacteria (PGPR) enhance plants' resilience against biotic and abiotic stresses, thereby playing a vital role in soil improvement and vegetation restoration efforts. PGPR assist plants in thriving under salt stress by modifying plant physiology, enhancing nutrient absorption, and synthesizing plant hormones.

View Article and Find Full Text PDF

A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay.

Mol Plant

January 2025

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Although numerous studies have focused on the specific organs or tissues at different development stages or under various abiotic and biotic stress, our understanding of the distribution and relative abundance of phytohormones throughout the entire life cycle of plant organs and tissues remains insufficient. Here, we present a phytohormone atlas resource covering the quantitative analysis of eight major classes of phytohormones, comprising a total of 40 hormone-related compounds, throughout the complete life cycle of wheat. In combination with transcriptome analysis, we established a Wheat Phytohormone Metabolic Regulatory Network (WPMRN).

View Article and Find Full Text PDF

The fungus Beauveria felina is often classified as one of the so-called good biocontrol agents. However, no information is available about the growth of this entomopathogenic fungus in the presence of other endophytic fungi, which are usually found in plant tissues. Effects of fungal interactions vary from inhibiting the activity of a biocontrol agent to stimulating its effect on the targeted pathogen.

View Article and Find Full Text PDF

Irritable bowel syndrome (IBS) is a multifactorial condition with heterogeneous pathophysiology, including intestinal permeability alterations. The aim of the present study was to assess the ability of a probiotic blend (PB) consisting of two strains (CECT7484 and CECT7485) and one strain of (CECT7483) to recover the permeability increase induced by mediators from IBS mucosal biopsies and to highlight the underlying molecular mechanisms. Twenty-one IBS patients diagnosed according to ROME IV criteria (11 IBS-D and 10 IBS-M) and 7 healthy controls were enrolled.

View Article and Find Full Text PDF

Genome-wide identification and functional roles relating to anthocyanin biosynthesis analysis in maize.

BMC Plant Biol

January 2025

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China.

Background: Anthocyanin is an important class of water-soluble pigments that are widely distributed in various tissues of plants, and it not only facilitates diverse color changes but also plays important roles in various biological processes. Maize silk, serving as an important reproductive organ and displaying a diverse range of colors, plays an indispensable role in biotic resistance through its possession of anthocyanin. However, the copy numbers, characteristics, and expression patterns of genes involved in maize anthocyanin biosynthesis are not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!