The purpose of this work was to develop an extraction technique to yield a betulinic acid-(BA) enriched extract of the traditional anti-anxiety plant Souroubea sympetala Gilg (Marcgraviaceae). Five extraction techniques were compared: supercritical carbon dioxide extraction (SCE), conventional solvent extraction with ethyl acetate (EtOAc), accelerated solvent extraction (ASE), ultrasonic assisted extraction (UAE) and soxhlet extraction (Sox). The EtOAc and SCE extraction methods resulted in BA-enriched extracts, with BA concentrations of 6.78 ± 0.2 and 5.54 ± 0.2 mg/g extract, respectively, as determined by HPLC-APCI-MS. The bioactivity of the BA-enriched extracts was compared in the elevated plus maze (EPM), a validated rodent anxiety behaviour assay. Rats orally administered a 75 mg/kg dose of SCE extract exhibited anxiolysis as compared with vehicle controls, with a 50% increase in the percent time spent in the open arms, a 73% increase in unprotected head dips and a 42% decrease in percent time spent in the closed arms. No significant differences were observed between the SCE and EtOAc extracts for these measures, but the animals dosed with SCE extract had significantly more unprotected head dips than those dosed with the EtOAc extract. The SCE extract demonstrated a dose-response in the EPM, with a trend toward decreased anxiety at 25 mg/kg, and significant anxiolysis was only observed at 75 mg/kg dose. This study demonstrates that SCE can be used to generate a betulinic acid-enriched extract with significant anxiolysis in vivo. Further, the study provides a scientific basis for the ethnobotanical use of this traditional medicine and a promising lead for a natural health product to treat anxiety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.3246 | DOI Listing |
Sci Rep
December 2024
Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, 151, Israel.
It has long been speculated that the mechanical properties of the human oocyte can be an indicator for oocyte viability. Recent studies have demonstrated that embryo implantation rates, following Intra-Cytoplasmic Sperm Injection (ICSI) procedures, may be increased if the shear modulus value of the oocyte Zona Pellucida (ZP) is taken into consideration during embryo transfer. The shear modulus was determined by an iterative oocyte specific finite element (FE) analysis based on the clinical ICSI data.
View Article and Find Full Text PDFFood Chem
November 2024
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico. Electronic address:
Opuntia ficus-indica (OFI) seeds are a rich source of functional lipids, yet research on Mexican cultivars remains limited. This study evaluated the antioxidant and anti-inflammatory properties of lipids extracted through subcritical fluid and supercritical fluid extraction with carbon dioxide (SCE-CO₂ and SFE-CO₂) from Mexican OFI Villanueva and Rojo Vigor seeds with and without enzymatic pretreatment. SCE OFI Villanueva oil showed higher extraction efficiency of linoleic (45.
View Article and Find Full Text PDFPhytomedicine
November 2024
College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China. Electronic address:
Nutrients
November 2024
Department of Bio-Medical Gerontology, Hallym University, Chuncheon 24252, Republic of Korea.
Objectives: The unknown immune-enhancing effects of steamed mature silkworms ( L.), known as HongJam (HJ), were investigated.
Methods: Supercritical fluid extracts from the White Jade variety of HJ (WJ-SCEs) were applied to in vitro RAW264.
Heliyon
November 2024
Department of Electrical and Electronic Engineering, Universidad de Los Andes, Bogotá, Colombia.
This paper presents a methodology for integrating Deep Reinforcement Learning (DRL) using a Deep-Q-Network (DQN) agent into real-time experiments to achieve the Global Maximum Power Point (GMPP) of Photovoltaic (PV) systems under various environmental conditions. Conventional methods, such as the Perturb and Observe (P&O) algorithm, often become stuck at the Local Maximum Power Point (LMPP) and fail to reach the GMPP under Partial Shading Conditions (PSC). The main contribution of this work is the experimental validation of the DQN agent's implementation in a synchronous DC-DC Buck converter (step-down converter) un-der both uniform and PSC conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!