We present a quantitative model for the phototransduction cascade in Drosophila photoreceptors. The process consists of four stages: (1) light absorption by Rhodopsin, (2) signal amplification phase mediated by a G-protein coupled cascade, (3) closed/open state kinetics of the transient receptor potential (TRP) ion channels which regulate the ionic current in/out of the cell and (4) Ca regulated positive and negative feedbacks. The model successfully reproduces the experimental results for: single photon absorption "quantum bump" (QB), statistical features for QB (average shape, peak current average value and variance, the latency distribution, etc.), arrestin mutant behaviour, low extracellular Ca(2+) cases, etc. The TRP channel activity is modeled by a Monod-Wyman-Changeux (MWC) model for allosteric interaction, instead of using the usual ad hoc Hill equation. This approach allows for a plausible physical explanation of how Ca/calmodulin regulate the protein activity. The cooperative nature of the TRP channel activation leads to "dark current" suppression at the output allowing for reliable detection of a single photon. Stochastic simulations were produced by using the standard rate equations combined with the Poisson distribution for generating random events from the forward and reverse reaction rates. Noise is inherent to the system but appears to be crucial for producing such reliable responses in this complex, highly non-linear system. The approach presented here may serve as a useful example how to treat complex cellular mechanisms underlying sensory processes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0ib00031kDOI Listing

Publication Analysis

Top Keywords

single photon
12
drosophila photoreceptors
8
trp channel
8
stochastic model
4
model single
4
photon response
4
response drosophila
4
photoreceptors quantitative
4
quantitative model
4
model phototransduction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!