Persistence of magic cluster stability in ultra-thin semiconductor nanorods.

Nanoscale

Departament de Química Física & Institut de Química Teòrica i Computacional, Universitat de Barcelona, C/Martí i Franquès 1, Barcelona, Spain.

Published: January 2010

The progression from quasi zero-dimensional (Q0D) nanoclusters to quasi one-dimensional (Q1D) nanorods, and, with increasing length, to nanowires, represents the most conceptually fundamental transition from the nanoscale to bulk-like length scales. This dimensionality crossover is particularly interesting, both scientifically and technologically, for inorganic semiconducting (ISC) materials, where striking concomitant changes in optoelectronic properties occur.(1,2) Such effects are most pronounced for ultra-thin(3) ISC nanorods/nanowires, where the confining and defective nature of the atomic structure become key. Although experiments on ISC materials in this size regime have revealed especially stable (or "magic") non-bulk-like Q0D nanoclusters,(4,5) all ISC Q1D nanostructures have been reported as having structures corresponding to bulk crystalline phases. For two important ISC materials (CdS and CdSe) we track the Q0D-to-Q1D transition employing state-of-the-art electronic structure calculations demonstrating an unexpected persistence of magic cluster stability over the bulk-like structure in ultra-thin nanorods up to >10 nm in length. The transition between the magic-cluster-based and wurtzite nanorods is found to be accompanied by a large change in aspect ratio thus potentially providing a route to nano-mechanical transducer applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b9nr00282kDOI Listing

Publication Analysis

Top Keywords

isc materials
12
persistence magic
8
magic cluster
8
cluster stability
8
isc
5
stability ultra-thin
4
ultra-thin semiconductor
4
nanorods
4
semiconductor nanorods
4
nanorods progression
4

Similar Publications

Carbene-metal-amide (CMA) complexes have diverse applications in luminescence, imaging and sensing. In this study, we designed and synthesized a series of CMA complexes, which were subsequently doped into a PMMA host. These materials demonstrate light-induced dynamic phosphorescence, attributed to their long intrinsic triplet state lifetime (τP,int, in the μs-ms scale), high intersystem crossing (ISC) rate constant (kISC, up to 107 s-1), and bright phosphorescence.

View Article and Find Full Text PDF

Hydrogen Bond "Double-Edged Sword Effect" on Organic Room-Temperature Phosphorescence Properties: A Theoretical Perspective.

J Phys Chem A

January 2025

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.

The strategy of designing efficient room-temperature phosphorescence (RTP) emitters based on hydrogen bond interactions has attracted great attention in recent years. However, the regulation mechanism of the hydrogen bond on the RTP property remains unclear, and corresponding theoretical investigations are highly desired. Herein, the structure-property relationship and the internal mechanism of the hydrogen bond effect in regulating the RTP property are studied through the combination of quantum mechanics and molecular mechanics methods (QM/MM) coupled with the thermal vibration correlation function method.

View Article and Find Full Text PDF

The potential risk of chemicals to the human eye is assessed by adopted test guidelines (TGs) for regulatory purposes to ensure consumer safety. Over the past decade, the Organization for Economic Co-operation and Development (OECD) has approved new approach methodologies (NAMs) to predict chemical eye damage. However, existing NAMs remain associated with limitations: First, no full replacement of the in vivo Draize eye test due to limited predictability of severe/mild damage was reached.

View Article and Find Full Text PDF

Introduction: Robot-assisted radical prostatectomy (RARP) is the treatment option for localized prostate cancer. It can lead to side effects like erectile dysfunction (ED) and post-prostatectomy urinary incontinence (PPUI). This study aimed to evaluate association between dyadic adjustment, PPUI and ED.

View Article and Find Full Text PDF

Eco-friendly cellulose paper based triboelectric material regulated by lignocellulose composition.

Int J Biol Macromol

December 2024

College of Environmental and Biological Engineering, Putian University, No. 1133 Middle Xueyuan Street, Chengxiang District, Putian City, Fujian Province 351100, People's Republic of China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, No. 1133 Middle Xueyuan Street, Chengxiang District, Putian City, Fujian Province 351100, People's Republic of China; Key Laboratory of Ecological Environment and Information Atlas, Putian University, No. 1133 Middle Xueyuan Street, Chengxiang District, Putian City, Fujian Province 351100, People's Republic of China.

Applying cellulose paper on the triboelectric material is the trend of developing eco-friendly triboelectric nanogenerator (TENG). However, the researchers always pay attention to improve the triboelectric property of cellulose paper by the grafting of functional groups and the introduction of conductive or high dielectric property materials, while neglecting the effects of lignocellulose fiber composition including hemicellulose and lignin. In this work, the contents of hemicellulose and lignin were adjusted by sodium hydroxide and sodium chlorite, respectively; and the effects of hemicellulose and lignin on the triboelectric performance of cellulose paper were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!