The influence of doping on the device characteristics of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors.

Nanoscale

Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia.

Published: July 2010

We report on a detailed analysis of the effects of doping on the main device parameters of In(0.5)Ga(0.5)As/GaAs/Al(0.2)Ga(0.8)As quantum dots-in-a-well infrared photodetectors. Due to the relatively large conduction band offset of GaAs/Al(0.2)Ga(0.8)As (167 meV) transitions from wetting layer to quantum well states are observed for the highly doped devices. Since increasing the doping concentration fills the quantum dot states, electrons are forced to occupy the one-dimensional wetting layer states and therefore have quantum-well-like properties. This has facilitated a comparative study of the effects of three-dimensional and one-dimensional confinement of electrons on device parameters such as the responsivity and dark current by studying one particular detector structure with different doping concentrations of the active region.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0nr00128gDOI Listing

Publication Analysis

Top Keywords

in05ga05as/gaas/al02ga08as quantum
8
quantum dots-in-a-well
8
dots-in-a-well infrared
8
infrared photodetectors
8
device parameters
8
wetting layer
8
influence doping
4
doping device
4
device characteristics
4
characteristics in05ga05as/gaas/al02ga08as
4

Similar Publications

The influence of variations in indium concentration and temperature on threshold current density (J) in In Ga As/GaAs ( = 0, 0.8 and 0.16) quantum dot (QD) laser diodes - synthesized via molecular beam epitaxy (MBE) with three distinct indium concentrations on GaAs (001) substrates - was meticulously examined.

View Article and Find Full Text PDF

Silicon nitride (SiN) integrated photonics is a highly promising platform for photonic quantum information processing. However, the efficient generation of single photons remains a significant challenge. Epitaxial InAs/GaAs quantum dots (QDs) embedded in wavelength-scale nanocavities offer a promising solution as single-photon sources (SPSs), but their integration with SiN has not yet been demonstrated.

View Article and Find Full Text PDF

Optimization of In-Situ Growth of Superconducting Al/InAs Hybrid Systems on GaAs for the Development of Quantum Electronic Circuits.

Materials (Basel)

January 2025

CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.

Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.

View Article and Find Full Text PDF

Bose-Einstein Condensation of Polaritons at Room Temperature in a GaAs/AlGaAs Structure.

ACS Photonics

January 2025

Department of Physics, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, Pennsylvania 15218, United States.

We report the canonical properties of the Bose-Einstein condensation of polaritons in the weak coupling regime, seen previously in many low-temperature experiments, at room temperature in a GaAs/AlGaAs structure. These effects include a nonlinear energy shift of the polaritons, showing that they are not noninteracting photons, and dramatic line narrowing due to coherence, giving coherent emission with a spectral width of 0.24 meV at room temperature with no external stabilization.

View Article and Find Full Text PDF

Correlated photon-pair sources are key components for quantum computing, networking, synchronization, and sensing applications. Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate time-energy and polarization entanglement at telecom wavelengths with sub-100 microwatt pump power. Many quantum systems operate in the visible or near-infrared ranges, necessitating visible-telecom entangled-pair sources for connecting remote systems via entanglement swapping and teleportation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!