Metagenomics: Facts and Artifacts, and Computational Challenges*.

J Comput Sci Technol

Center for Research on BioSystems, Calit2, UC San Diego, La Jolla CA 92093.

Published: January 2009

Metagenomics is the study of microbial communities sampled directly from their natural environment, without prior culturing. By enabling an analysis of populations including many (so-far) unculturable and often unknown microbes, metagenomics is revolutionizing the field of microbiology, and has excited researchers in many disciplines that could benefit from the study of environmental microbes, including those in ecology, environmental sciences, and biomedicine. Specific computational and statistical tools have been developed for metagenomic data analysis and comparison. New studies, however, have revealed various kinds of artifacts present in metagenomics data caused by limitations in the experimental protocols and/or inadequate data analysis procedures, which often lead to incorrect conclusions about a microbial community. Here, we review some of the artifacts, such as overestimation of species diversity and incorrect estimation of gene family frequencies, and discuss emerging computational approaches to address them. We also review potential challenges that metagenomics may encounter with the extensive application of next-generation sequencing (NGS) techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905821PMC
http://dx.doi.org/10.1007/s11390-010-9306-4DOI Listing

Publication Analysis

Top Keywords

data analysis
8
metagenomics
5
metagenomics facts
4
facts artifacts
4
artifacts computational
4
computational challenges*
4
challenges* metagenomics
4
metagenomics study
4
study microbial
4
microbial communities
4

Similar Publications

Background: Wearable sensor technologies, often referred to as "wearables," have seen a rapid rise in consumer interest in recent years. Initially often seen as "activity trackers," wearables have gradually expanded to also estimate sleep, stress, and physiological recovery. In occupational settings, there is a growing interest in applying this technology to promote health and well-being, especially in professions with highly demanding working conditions such as first responders.

View Article and Find Full Text PDF

Background: Japanese encephalitis (JE) is a zoonotic parasitic disease caused by the Japanese encephalitis virus (JEV), and may cause fever, nausea, headache, or meningitis. It is currently unclear whether the epidemiological characteristics of the JEV have been affected by the extreme climatic conditions that have been observed in recent years.

Objective: This study aimed to examine the epidemiological characteristics, trends, and potential risk factors of JE in Taiwan from 2008 to 2020.

View Article and Find Full Text PDF

Use of the FHTHWA Index as a Novel Approach for Predicting the Incidence of Diabetes in a Japanese Population Without Diabetes: Data Analysis Study.

JMIR Med Inform

January 2025

Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Background: Many tools have been developed to predict the risk of diabetes in a population without diabetes; however, these tools have shortcomings that include the omission of race, inclusion of variables that are not readily available to patients, and low sensitivity or specificity.

Objective: We aimed to develop and validate an easy, systematic index for predicting diabetes risk in the Asian population.

Methods: We collected the data from the NAGALA (NAfld [nonalcoholic fatty liver disease] in the Gifu Area, Longitudinal Analysis) database.

View Article and Find Full Text PDF

Multivariate pattern analysis was recently extended with covariate projections to solve the challenging task of modelling and interpreting associations in the presence of linear dependent multivariate covariates. Within a joint model, this approach allows quantification of the net association pattern between the outcome and the explanatory variables and between the individual covariates and these variables. The aim of this paper is to apply this methodology to establish the net multivariate association pattern between cardiorespiratory fitness (CRF) and a high-resolution linear dependent physical activity (PA) intensity descriptor derived from accelerometry in children and to validate the crucial sub-regions in the PA spectrum predicting CRF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!