We demonstrate a polarization-independent tunable optical filter based on switchable polarization gratings (PGs) formed using reactive and nonreactive liquid crystals (LCs). PGs are anisotropic diffraction gratings that exhibit unique properties, including a zero-order transmittance that is independent of incident polarization and that can vary from approximately 0% to approximately 100%, depending on wavelength and applied voltage. A stack of several PGs of varying thicknesses combined with an elemental angle filter yields polarization-independent bandpass tuning with minimal loss. We introduce a novel hybrid PG consisting of both reactive and nonreactive LC layers, which allows very thick gratings to be created with thin active LC layers. We demonstrate a tunable optical filter with a peak transmittance of 84% of unpolarized light, a minimum full width at half-maximum of 64 nm, and a maximum tuning range of 140 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.49.003900 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!