The glucagon receptor belongs to the B family of G-protein coupled receptors. Little structural information is available about this receptor and its association with glucagon. We used the substituted cysteine accessibility method and three-dimensional molecular modeling based on the gastrointestinal insulinotropic peptide and glucagon-like peptide 1 receptor structures to study the N-terminal domain of this receptor, a central element for ligand binding and specificity. Our results showed that Asp(63), Arg(116), and Lys(98) are essential for the receptor structure and/or ligand binding because mutations of these three residues completely disrupted or markedly impaired the receptor function. In agreement with these data, our models revealed that Asp(63) and Arg(116) form a salt bridge, whereas Lys(98) is engaged in cation-π interactions with the conserved tryptophans 68 and 106. The native receptor could not be labeled by hydrophilic cysteine biotinylation reagents, but treatment of intact cells with [2-(trimethylammonium)ethyl]methanethiosulfonate increased the glucagon binding site density. This result suggested that an unidentified protein with at least one free cysteine associated with the receptor prevented glucagon recognition and that [2-(trimethylammonium)ethyl]methanethiosulfonate treatment relieved this inhibition. The substituted cysteine accessibility method was also performed on 15 residues selected using the three-dimensional models. Several receptor mutants, despite a relatively high predicted cysteine accessibility, could not be labeled by specific reagents. The three-dimensional models show that these mutated residues are located on one face of the protein. This could be part of the interface between the receptor and the unidentified inhibitory protein, making these residues inaccessible to biotinylation compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945586 | PMC |
http://dx.doi.org/10.1074/jbc.M110.102814 | DOI Listing |
Cureus
December 2024
Internal Medicine, National Hospital of Sri Lanka, Colombo, LKA.
Hereditary hemochromatosis occurs due to genetic mutations, namely, cysteine-to-tyrosine substitution at amino acid 282 (C282Y) and histidine-to-aspartic acid substitution at 63 (H63D) mutations. The role of H63D mutation in hemochromatosis is less clear, and its penetrance is low even in homozygotes. Therefore, iron overload in H63D heterozygotes is extremely rare and scarcely reported.
View Article and Find Full Text PDFAntibodies (Basel)
January 2025
Department of Urology, Medical Center-University of Freiburg, 79106 Freiburg im Breisgau, Germany.
Background/objectives: Photoimmunotherapy (PIT) is an innovative approach for the targeted therapy of cancer. In PIT, photosensitizer dyes are conjugated to tumor-specific antibodies for targeted delivery into cancer cells. Upon irradiation with visible light, the photosensitizer dye is activated and induces cancer-specific cell death.
View Article and Find Full Text PDFBreast Cancer (Auckl)
January 2025
Department of Pharmacy, Yonsei University, Incheon, South Korea.
Background: Ferroptosis is a recently studied form of programmed cell death characterized by lipid peroxides accumulation in the cells. This process occurs when a cell's antioxidant capacity is disturbed resulting in the inability of the cell to detoxify the toxic peroxides. Two major components that regulate ferroptosis are cysteine and iron.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Medicinal Chemistry and Drug Design Technologies Department, Chiesi Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy.
Janus kinase type 3 (JAK3), an emerging target for treating autoimmune diseases, possesses a front pocket cysteine that is targeted by covalent modifiers, best represented by the marketed drug ritlecitinib (). Recently, 2,3-dihydro-1-inden-1-ylcyanamides have been developed as novel JAK3 inhibitors. Among them, the -(6-(7-pyrrolo[2,3-]pyrimidin-4-yl)-2,3-dihydro-1-inden-1-yl)cyanamide inhibitor () and its methylated analogue (), while being potent inhibitors, displayed different mechanisms of action (covalent vs noncovalent) and binding modes (Casimiro-Garcia et al.
View Article and Find Full Text PDFJ Membr Biol
January 2025
Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India.
Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!