Defensins are an important family of natural antimicrobial peptides. Chlamydophila pneumoniae, a common cause of acute respiratory infection, has a tendency to cause persistent inflammatory diseases such as atherosclerosis, which may lead to cardiovascular disease or stroke. As endothelial cells are related to the physiopathology of stroke, the effects of in vitro C. pneumoniae infection on the expression of human β-defensin 2 (HBD-2) in brain capillary endothelial cells (BB19) was investigated. A time-dependent increase in HBD-2 mRNA was observed by means of real-time reverse transcription PCR (RT-PCR) in BB19 cells following C. pneumoniae infection, with a maximum increase at 24 h. A gradual induction of HBD-2 protein in the C. pneumoniae-infected endothelial cells was detected by immunoblotting. Immunofluorescence revealed the staining of HBD-2 in the cytoplasm of endothelial cells following C. pneumoniae infection. The secretion of HBD-2 (confirmed by ELISA) was significantly elevated 24 h after C. pneumoniae infection. These novel results indicate that HBD-2 is expressed and produced in the human brain capillary endothelial cells upon infection with C. pneumoniae, and provide evidence that HBD-2 plays a role in the early immune responses to C. pneumoniae and probably in the immunopathogenesis of atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1753425910375582 | DOI Listing |
ACS Nano
January 2025
Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China.
Blood-contacting medical devices can easily trigger immune responses, leading to thrombosis and hyperblastosis. Constructing microtexture that provides efficient antithrombotic and rapid reendothelialization performance on complex curved surfaces remains a pressing challenge. In this work, we present a robust and regular micronano binary texture on the titanium surface, characterized by exceptional mechanical strength and precisely controlled wettability to achieve excellent hemocompatibility.
View Article and Find Full Text PDFPurpose: We aimed to investigate the role of gallic acid treatment on spinal cord tissues after spinal cord injury (SCI) and its relationship with endoplasmic reticulum (ER) stress by histochemical, immunohistochemical, and in-silico techniques.
Methods: Thirty female Wistar albino rats were divided into three groups: sham, SCI, and SCI+gallic acid. SCI was induced by dropping a 15-g weight onto the exposed T10-T11 spinal cord segment.
Sci Adv
January 2025
College of Chemistry, Fuzhou University, Fuzhou 350116, China.
The angiopoietin (Ang)-Tie axis, critical for endothelial cell function and vascular development, is a promising therapeutic target for treating vascular disorders and inflammatory conditions like sepsis. This study aimed to enhance the binding affinity of recombinant Ang1 variants to the Tie2 and explore their therapeutic potential. Structural insights from the Ang1-Tie2 complex enabled the identification of key residues within the Ang1 receptor binding domain (RBD) critical for Tie2 interaction.
View Article and Find Full Text PDFLaryngocutaneous fistula is one of the most important complications encountered after larynx surgery. Stem cell therapy is a promising treatment approach for the future, both without the need for surgical methods and by assisting surgical methods to close the fistula. 30 female Downey Sprague rats were divided into 5 separate groups and pharyngocutaneous fistula was created.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany.
Background And Purpose: Endothelial dysfunction is considered an emerging therapeutic target to prevent complications during acute stroke and to prevent recurrent stroke. This review aims to provide an overview of the current knowledge on endothelial dysfunction, outline the diagnostic methods used to measure it and highlight the drugs currently being investigated for the treatment of endothelial dysfunction in acute ischemic stroke.
Methods: The PubMed® and ClinicalTrials.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!