Background: The extracellular ATP-gated cation channel, P2X7 receptor, has an emerging role in neoplasia, however progress in the field is limited by a lack of malignant cell lines expressing this receptor.

Methods: Immunofluorescence labelling and a fixed-time ATP-induced ethidium+ uptake assay were used to screen a panel of human malignant cell lines for the presence of functional P2X7. The presence of P2X7 was confirmed by RT-PCR, immunoblotting and pharmacological approaches. ATP-induced cell death was measured by colourimetric tetrazolium-based and cytofluorometric assays. ATP-induced CD23 shedding was measured by immunofluorescence labelling and ELISA.

Results: RPMI 8226 multiple myeloma cells expressed P2X7 mRNA and protein, as well as P2X1, P2X4 and P2X5 mRNA. ATP induced ethidium+ uptake into these cells with an EC₅₀ of ~116 μM, and this uptake was reduced in the presence of extracellular Ca²+ and Mg²+. The P2X7 agonist 2'- and 3'-0(4-benzoylbenzoyl) ATP, but not UTP, induced ethidium+ uptake. ATP-induced ethidium+ uptake was impaired by the P2X7 antagonists, KN-62 and A-438079. ATP induced death and CD23 shedding in RPMI 8226 cells, and both processes were impaired by P2X7 antagonists. The metalloprotease antagonists, BB-94 and GM6001, impaired ATP-induced CD23 shedding but not ethidium+ uptake.

Conclusions: P2X7 receptor activation induces cell death and CD23 shedding in RPMI 8226 cells.

General Significance: RPMI 8226 cells may be useful to study the role of P2X7 in multiple myeloma and B-lymphocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2010.07.001DOI Listing

Publication Analysis

Top Keywords

cd23 shedding
20
rpmi 8226
20
ethidium+ uptake
16
p2x7 receptor
12
cell death
12
death cd23
12
multiple myeloma
12
p2x7
10
receptor activation
8
activation induces
8

Similar Publications

Chronic lymphocytic leukemia (CLL) is a distinct category of lymphoproliferative disorder characterized by the clonal expansion of mature B cells, followed by their accumulation in primary and secondary lymphoid organs. Cluster of differentiation (CD) markers such as CD79b, CD45, CD23, CD22 and CD81 serve as reliable prognostic indicators in CLL as well as the human leukocyte antigen (HLA) with its well-documented associations with various cancers. This study aims to investigate, for the first time, potential connections between HLA typing and CD marker expression in CLL.

View Article and Find Full Text PDF

Atherosclerosis, a process in which macrophages play a key role, is accelerated in diabetes. Elevated concentrations of serum-oxidized low-density lipoproteins (oxLDL) represent a common feature of both conditions. The main goal of this study was to determine the contribution of oxLDL to the inflammatory response of macrophages exposed to diabetic-mimicking conditions.

View Article and Find Full Text PDF

P2X7 is an extracellular adenosine 5'-triphopshate (ATP)-gated cation channel present on leukocytes, where its activation induces pro-inflammatory cytokine release and ectodomain shedding of cell surface molecules. Human P2X7 can be partially inhibited by amiloride and its derivatives at micromolar concentrations. This study aimed to screen a library of compounds derived from amiloride or its derivative 5-(,-hexamethylene) amiloride (HMA) to identify a potential P2X7 antagonist.

View Article and Find Full Text PDF

ADAM8 as a membrane-anchored metalloproteinase-disintegrin is upregulated under pathological conditions such as inflammation and cancer. As active sheddase, ADAM8 can cleave several membrane proteins, among them the low-affinity receptor FcεRII CD23. Hydroxamate-based inhibitors are routinely used to define relevant proteinases involved in ectodomain shedding of membrane proteins.

View Article and Find Full Text PDF

Roles of extracellular nucleotides and P2 receptors in ectodomain shedding.

Cell Mol Life Sci

November 2016

School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia.

Ectodomain shedding of integral membrane receptors results in the release of soluble molecules and modification of the transmembrane portions to mediate or modulate extracellular and intracellular signalling. Ectodomain shedding is stimulated by a variety of mechanisms, including the activation of P2 receptors by extracellular nucleotides. This review describes in detail the roles of extracellular nucleotides and P2 receptors in the shedding of various cell surface molecules, including amyloid precursor protein, CD23, CD62L, and members of the epidermal growth factor, immunoglobulin and tumour necrosis factor families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!