Characterization of bovine neutrophil beta2-adrenergic receptor function.

J Vet Pharmacol Ther

Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0442, USA.

Published: August 2010

This study compares bovine leukocyte beta-adrenergic receptor densities to that of the rat, demonstrates for the first time a functional beta(2)-adrenergic receptor signaling pathway in steer neutrophils, and investigates the effect of an inflammatory stimulus on that signaling pathway. The beta(1)-/beta(2)-adrenergic antagonist ([3H])CGP-12177 demonstrated that rat lymphocyte specific binding-site density was highest, followed by steer and dairy cow lymphocytes, and lastly steer and dairy cow neutrophils. The beta(2)-adrenergic agonist terbutaline stimulated steer neutrophil adenosine 3,5-cyclic monophosphate (cAMP) production, an effect increased by inclusion of > or = 1 x 10(-8) M phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C. Both terbutaline and the nonselective phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) independently decreased steer neutrophil superoxide anion production in a concentration-dependent manner, with 1 x 10(-4) M IBMX enhancing both the potency and efficacy of the terbutaline effect (up to 74% reduction in superoxide anion production). Superoxide anion production was also reduced by the synthetic cAMP analog 8-bromo-cAMP, which increased the potency of the IBMX effect on superoxide anion production. Taken together, these data demonstrate the presence of a beta(2)-adrenergic receptor signaling pathway in bovine neutrophils much like that described in other animal species, as well as the potential for an inflammatory stimulus to alter its function.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2885.2009.01143.xDOI Listing

Publication Analysis

Top Keywords

superoxide anion
16
anion production
16
beta2-adrenergic receptor
12
signaling pathway
12
receptor signaling
8
inflammatory stimulus
8
steer dairy
8
dairy cow
8
steer neutrophil
8
steer
5

Similar Publications

Introduction: Antisense oligonucleotides (ASOs) have shown promise in reducing amyloid precursor protein (APP) levels in neurons, but their effects in astrocytes, key contributors to neurodegenerative diseases, remain unclear. This study evaluates the efficacy of APP ASOs in astrocytes derived from an individual with Down syndrome (DS), a population at high risk for Alzheimer's disease (AD).

Methods: Human induced pluripotent stem cells (hiPSCs) from a healthy individual and an individual with DS were differentiated into astrocytes.

View Article and Find Full Text PDF

Assembly of Genetically Engineered Ionizable Protein Nanocage-based Nanozymes for Intracellular Superoxide Scavenging.

Nat Commun

January 2025

Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.

Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).

View Article and Find Full Text PDF

Background: The edible seeds of Ocimum gratissimum and Ocimum basilicum were found to be a potent source of phytochemicals with noteworthy antioxidant, antidiabetic, and antimicrobial properties. This study aimed to investigate the impact of germination and extraction solvents (ethanol (EtOH), distilled water) on the therapeutic properties exhibited and the ability of seed extracts to act as natural food preservatives.

Results: The EtOH extracts of germinated O.

View Article and Find Full Text PDF

Decreasing the aggregation of photosensitizers to facilitate energy transfer for improved photodynamic therapy.

Nanoscale

January 2025

Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.

The mode of energy transfer between photosensitizers and oxygen determines the yield of singlet oxygen (O), crucial for photodynamic therapy (PDT). However, the aggregation of photosensitizers promotes electron transfer while inhibiting pure energy transfer, resulting in the generation of the hypotoxic superoxide anion (O) and consumption of substantial oxygen. Herein, we achieve the reduction of the aggregation of photosensitizers to inhibit electron transfer through classical chemical crosslinking, thereby boosting the production of O.

View Article and Find Full Text PDF

Adverse drug reactions (ADR) remain a challenge in modern healthcare, particularly given the increasing complexity of therapeutics. WHO's definition of an adverse drug reaction as a response to a drug that is noxious and unintended and occurs at doses normally used in man for the prophylaxis, diagnosis or therapy of disease, or for modification of physiological function. This definition underscores the importance of monitoring and mitigating unintended drug effects, particularly for widely used medications like valproic acid (VPA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!