The opportunistic pathogenic mold Aspergillus fumigatus is an increasing cause of morbidity and mortality in immunocompromised and in part immunocompetent patients. A. fumigatus can grow in multicellular communities by the formation of a hyphal network encased in an extracellular matrix. Here, we describe the proteome and transcriptome of planktonic- and biofilm-grown A. fumigatus mycelium after 24 and 48 h. A biofilm- and time-dependent regulation of many proteins and genes of the primary metabolism indicates a developmental stage of the young biofilm at 24 h, which demands energy. At a matured biofilm phase, metabolic activity seems to be reduced. However, genes, which code for hydrophobins, and proteins involved in the biosynthesis of secondary metabolites were significantly upregulated. In particular, proteins of the gliotoxin secondary metabolite gene cluster were induced in biofilm cultures. This was confirmed by real-time PCR and by detection of this immunologically active mycotoxin in culture supernatants using HPLC analysis. The enhanced production of gliotoxin by in vitro formed biofilms reported here may also play a significant role under in vivo conditions. It may confer A. fumigatus protection from the host immune system and also enable its survival and persistence in chronic lung infections such as aspergilloma.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.201000129DOI Listing

Publication Analysis

Top Keywords

aspergillus fumigatus
8
enhanced production
8
fumigatus
5
functional genomic
4
genomic profiling
4
profiling aspergillus
4
biofilm
4
fumigatus biofilm
4
biofilm reveals
4
reveals enhanced
4

Similar Publications

Background: Detection of serum-specific immunoglobulin G (sIgG) to Aspergillus fumigatus traditionally relied on precipitin assays, which lack standardization and have poor analytical sensitivity. Automated quantitative immunoassays are now more widely used alternatives. A challenge, however, is determining reference interval (RI) cutoffs indicative of disease presence.

View Article and Find Full Text PDF

Microbial pathogens generate extracellular vesicles (EVs) for intercellular communication and quorum sensing. Microbial EVs also induce inflammatory pathways within host innate immune cells. We previously demonstrated that EVs secreted by trigger type I interferon signaling in host cells specifically via the cGAS-STING innate immune signaling pathway.

View Article and Find Full Text PDF

Correlation of Sensitization with Mucus Plugging in COPD.

Int J Chron Obstruct Pulmon Dis

January 2025

Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People's Republic of China.

Background: Both sensitization and mucus plugs are associated with poor clinical outcomes in COPD. However, little is known about the association between hypersensitivity and mucus plugging in patients with COPD.

Methods: We retrospectively enrolled COPD patients who had visited Peking University Third Hospital and received measurement of the specific IgE ( sIgE) from Oct 1, 2018 to Sep 30, 2023.

View Article and Find Full Text PDF

The proteomic response of to amphotericin B (AmB) reveals the involvement of the RTA-like protein RtaA in AmB resistance.

Microlife

December 2024

Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany.

The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by . Increasing resistance to AmB in clinical isolates of species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of exposed to sublethal concentrations of AmB and AmBisome.

View Article and Find Full Text PDF

Background: Chronic pulmonary aspergillosis (CPA) is a disease commonly caused by Aspergillus fumigatus and other Aspergillus species characterized by cavitary lung lesions. Tea garden population is an agrarian population of Assam, mostly associated with tea plantations. Assam is a major tea-producing state with 803 tea gardens producing approximately 50% of the total tea in India, of which 177 are present in the Dibrugarh district alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!