Mechanisms involved in induction processes have been investigated using fresh human hepatocytes in culture as a cellular model and using mass spectrometry-based metabonomics as a global investigation tool. Sample preparation to data analysis have been detailed in an approach enabling to separate drug-induced (endogenous metabolites) and drug-related (drug metabolites) biomarkers for reference inducers. Rifampicin, a nuclear pregnane X receptor (PXR) ligand; CITCO, a nuclear constitutive androstane receptor (CAR) ligand; and phenobarbital, which activates both CAR and PXR, have been used. Specific intra-cellular metabolites have been isolated for rifampicin and CITCO as potential endogenous biomarkers of their respective induction mechanism. A mixture of these two types of biomarkers modified in the same way after treatment with either rifampicin or CITCO on the one hand and with phenobarbital on the other hand has been found.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-60761-688-7_19DOI Listing

Publication Analysis

Top Keywords

rifampicin citco
8
metabonomic studies
4
studies human
4
human hepatocyte
4
hepatocyte primary
4
primary culture
4
culture mechanisms
4
mechanisms involved
4
involved induction
4
induction processes
4

Similar Publications

The hepatic cytochrome p450's (CYP) are of major importance for the metabolism of xenobiotics and knowledge about their regulation is crucial. This knowledge often originates from cell models; primary human hepatocytes (PHH) being the gold standard. However, due to limited availability of high-quality human donor organs, basic knowledge on alternative models are needed.

View Article and Find Full Text PDF

Negative Regulation of Human Hepatic Constitutive Androstane Receptor by Cholesterol Synthesis Inhibition: Role of Sterol Regulatory Element Binding Proteins.

Drug Metab Dispos

August 2021

Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)

The squalene synthase inhibitor squalestatin 1 (Squal1) is a potent and efficacious inducer of CYP2B expression in primary cultured rat hepatocytes and rat liver. To determine whether Squal1 is also an inducer of human CYP2B, the effects of Squal1 treatment were evaluated in primary cultured human hepatocytes, differentiated HepaRG cells, and humanized mouse livers. Squal1 treatment did not increase CYP2B6 mRNA levels in human hepatocytes or HepaRG cells and only slightly and inconsistently increased CYP2B6 mRNA content in humanized mouse liver.

View Article and Find Full Text PDF

Constitutive Androstane Receptor-Mediated Inhibition of Metformin on Phase II Metabolic Enzyme SULT2A1.

Int J Endocrinol

February 2021

Department of Endocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.

Background: Metformin, as a first-line treatment for diabetes, interacts with many protein kinases and transcription factors which affect the expression of downstream target genes governing drug metabolism. Sulfotransferase, SULT2A1, one phase II metabolic enzyme, sulfonates both xenobiotic and endobiotic compounds to accelerate drug excretion. Herein, we designed experiments to investigate the effects and mechanisms of metformin on SULT2A1 expression in vitro.

View Article and Find Full Text PDF

Induction of cytochrome P450 can cause drug-drug interactions and efficacy failure. Induction risk in liver and gut is typically inferred from experiments with plated hepatocytes. Organoids are physiologically relevant, multicellular structures originating from stem cells.

View Article and Find Full Text PDF

Little is known about what roles the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) play in drug metabolism in high-altitude hypoxia. Likewise, the potential interaction of nuclear receptors and drug metabolism enzymes during drug metabolism of high-altitude hypoxia is not fully understood. In this work, we investigated the effects of high-altitude hypoxia on transcriptional regulation of cytochrome P450 (CYP450) and UDP-glucuronosyltransferase 1A1 (UGT1A1) genes mediated by PXR and CAR proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!