We propose a novel approach to resolve simultaneously the distributions of velocities and concentration of multiple, submicron species in microfluidic devices using microparticle image velocimetry, and particle counting. Both two-dimensional measurement and three-dimensional analysis of flow fields, from the stacked images, are achieved on applying a confocal fluorescence microscope. The displacements of all seeding particles are monitored to determine the overall velocity field, whereas the multicolor particles are counted and analyzed individually for each color to reveal the distributions of concentration and velocity of each species. A particle-counting algorithm is developed to determine quantitatively the spatially resolved concentration. This simultaneous measurement is performed on a typical T-shaped channel to investigate the mixing of fluids. The results are verified with numerical simulation; satisfactory agreement is achieved. This measurement technique possesses reliability appropriate for a powerful tool to analyze multispecies mixing flows, two-phase flows, and biofluids in microfluidic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905275 | PMC |
http://dx.doi.org/10.1063/1.3366721 | DOI Listing |
Background: Bariatric surgeries, such as laparoscopic sleeve gastrectomy (LSG), not only result in significant weight loss but also improve the inflammatory state in obese patients. This study aimed to investigate the effects of LSG on weight loss and inflammation status in bariatric patients 1-year post-procedure.
Methods: This prospective cohort study was conducted from September 2022 to May 2024.
Chaos
January 2025
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
The diffusion of information plays a crucial role in a society, affecting its economy and the well-being of the population. Characterizing the diffusion process is challenging because it is highly non-stationary and varies with the media type. To understand the spreading of newspaper news in Argentina, we collected data from more than 27 000 articles published in six main provinces during 4 months.
View Article and Find Full Text PDFPlant Divers
November 2024
College of Urban and Environmental Sciences, MOE Key Laboratory of Earth Surface Processes, Peking University, Beijing 100871, China.
Grasslands account for about a quarter of the Earth's land area and are one of the major terrestrial ecosystems, with significant ecological and economic values. The influence of environmental factors and management types on grassland biodiversity has garnered considerable attention. This study investigated how patterns of species richness are influenced by geographical distance, environmental gradients, and management type in the moist mountain grasslands of northeastern Yunnan, China.
View Article and Find Full Text PDFBME Front
January 2024
CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
Spatial monoomics has been recognized as a powerful tool for exploring life sciences. Recently, spatial multiomics has advanced considerably, which could contribute to clarifying many biological issues. Spatial monoomics techniques in epigenomics, genomics, transcriptomics, proteomics, and metabolomics can enhance our understanding of biological functions and cellular identities by simultaneously measuring tissue structures and biomolecule levels.
View Article and Find Full Text PDFChemSusChem
January 2025
Kwansei Gakuin University: Kansei Gakuin Daigaku, Department of Applied Chemistry for Environment, 1 Gakuen-Uegahara, 669-1330, Sanda, JAPAN.
The natural Z-scheme of oxygenic photosynthesis efficiently drives electron transfer from photosystem II (PSII) to photosystem I (PSI) via an electron transport chain, despite the lower energy levels of PSII. Inspired by this sophisticated mechanism, we present a layered cascade bio-solar cell (CBSC) that emulates the Z-scheme. In this design, chlorophyll derivatives (Chl) act as PSI analogs, while bacteriochlorophyll derivatives (BChl) serve as PSII analogs in the active layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!