Whole-genome searches have identified nicotinic acetylcholine receptor alpha5-alpha3-beta4 subunit gene variants that are associated with smoking. How genes support this addictive and high-risk behavior through their expression in the brain remains poorly understood. Here we show that a key alpha5 gene variant Asp398Asn is associated with a dorsal anterior cingulate-ventral striatum/extended amygdala circuit, such that the "risk allele" decreases the intrinsic resting functional connectivity strength in this circuit. Importantly, this effect is observed independently in nonsmokers and smokers, although the circuit strength distinguishes smokers from nonsmokers, predicts addiction severity in smokers, and is not secondary to smoking per se, thus representing a trait-like circuitry biomarker. This same circuit is further impaired in people with mental illnesses, who have the highest rate of smoking. Identifying where and how brain circuits link genes to smoking provides practical neural circuitry targets for new treatment development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922167 | PMC |
http://dx.doi.org/10.1073/pnas.1004745107 | DOI Listing |
Nanotechnology
January 2025
Anhui Agricultural University, Hefei, 230036, P. R. China, Hefei, 230036, CHINA.
Strain sensing fabrics are able to sense the deformation of the outside world, bringing more accurate and real-time monitoring and feedback to users. However, due to the lack of clear sensing mechanism for high sensitivity and high linearity carbon matrix composites, the preparation of high performance strain sensing fabric weaving is still a major challenge. Here, an elastic polyurethane(PU)-based conductive fabric(GCPU) with high sensitivity, high linearity and good hydrophobicity is prepared by a novel synergistic conductive network strategy.
View Article and Find Full Text PDFNanotechnology
January 2025
Xidian University, Xi'an 710071, China, Xi'an, Xian, Shaanxi, 710126, CHINA.
Anti-ambipolar transistors (AAT) are considered as a breakthrough technology in the field of electronics and optoelectronics, which is not only widely used in diverse logic circuits, but also crucial for the realization of high-performance photodetectors. The anti-ambipolar characteristics arising from the gate-tunable energy band structure can produce high-performance photodetection at different gate voltages. As a result, this places higher demands on the parametric driving range (ΔVg) and peak-to-valley ratio (PVR) of the AAT.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, United States of America.
Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common symptom of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Mathematics and Engineering Physics, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
This paper focuses on modeling Resistor-Inductor (RL) electric circuits using a fractional Riccati initial value problem (IVP) framework. Conventional models frequently neglect the complex dynamics and memory effects intrinsic to actual RL circuits. This study aims to develop a more precise representation using a fractional-order Riccati model.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea. Electronic address:
Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!