Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent animal studies indicate that insulin increases arterial baroreflex control of lumbar sympathetic nerve activity; however, the extent to which these findings can be extrapolated to humans is unknown. To begin to address this, muscle sympathetic nerve activity (MSNA) and arterial blood pressure were measured in 19 healthy subjects (27 ± 1 years) before, and for 120 min following, two common methodologies used to evoke sustained increases in plasma insulin: a mixed meal and a hyperinsulinaemic euglycaemic clamp. Weighted linear regression analysis between MSNA and diastolic blood pressure was used to determine the gain (i.e. sensitivity) of arterial baroreflex control of MSNA. Plasma insulin was significantly elevated within 30 min following meal intake (34 ± 6 uIU ml(1); P < 0.05) and remained above baseline for up to 120 min. Similarly, after meal intake, arterial baroreflex-MSNA gain for burst incidence and total MSNA was increased and remained elevated for the duration of the protocol (e.g. burst incidence gain: 3.29 ± 0.54 baseline vs. 5.64 ± 0.67 bursts (100 heart beats)(1) mmHg(1) at 120 min; P < 0.05). During the hyperinsulinaemic euglycaemic clamp, in which insulin was elevated to postprandial concentrations (42 ± 6 μIU ml(1); P < 0.05), while glucose was maintained constant, arterial baroreflex-MSNA gain was similarly enhanced (e.g. burst incidence gain: 2.44 ± 0.29 baseline vs. 4.74 ± 0.71 bursts (100 heart beats)(1) mmHg(1) at 120 min; P < 0.05). Importantly, during time control experiments, with sustained fasting insulin concentrations, the arterial baroreflex-MSNA gain remained unchanged. These findings demonstrate, for the first time in healthy humans, that increases in plasma insulin enhance the gain of arterial baroreflex control of MSNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988520 | PMC |
http://dx.doi.org/10.1113/jphysiol.2010.191866 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!