Monte Carlo based geometrical model for efficiency calculation of an n-type HPGe detector.

Appl Radiat Isot

Instituto Superior de Tecnologias y Ciencias Aplicadas, Quinta de los Molinos Ave. Salvador Allende, esq. Luaces, Plaza de la Revolucion, Ciudad de la Habana, CP 10400, Cuba.

Published: December 2010

A procedure to optimize the geometrical model of an n-type detector is described. Sixteen lines from seven point sources ((241)Am, (133)Ba, (22)Na, (60)Co, (57)Co, (137)Cs and (152)Eu) placed at three different source-to-detector distances (10, 20 and 30 cm) were used to calibrate a low-background gamma spectrometer between 26 and 1408 keV. Direct Monte Carlo techniques using the MCNPX 2.6 and GEANT 4 9.2 codes, and a semi-empirical procedure were performed to obtain theoretical efficiency curves. Since discrepancies were found between experimental and calculated data using the manufacturer parameters of the detector, a detail study of the crystal dimensions and the geometrical configuration is carried out. The relative deviation with experimental data decreases from a mean value of 18-4%, after the parameters were optimized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2010.06.018DOI Listing

Publication Analysis

Top Keywords

monte carlo
8
geometrical model
8
carlo based
4
based geometrical
4
model efficiency
4
efficiency calculation
4
calculation n-type
4
n-type hpge
4
hpge detector
4
detector procedure
4

Similar Publications

In this work, we propose a path integral Monte Carlo approach based on discretized continuous degrees of freedom and rejection-free Gibbs sampling. The ground state properties of a chain of planar rotors with dipole-dipole interactions are used to illustrate the approach. Energetic and structural properties are computed and compared to exact diagonalization and numerical matrix multiplication for N ≤ 3 to assess the systematic Trotter factorization error convergence.

View Article and Find Full Text PDF

Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle-particle interactions is limited. This work presents results under a combination of electric and magnetic fields.

View Article and Find Full Text PDF

2D and 3D porous coordination networks (PCNs) as exemplified by metal-organic frameworks, MOFs, have garnered interest for their potential utility as sorbents for molecular separations and storage. The inherent modularity of PCNs has enabled the development of crystal engineering strategies for systematic fine-tuning of pore size and chemistry in families of related PCNs. The same cannot be said about one-dimensional (1D) coordination polymers, CPs, which are understudied with respect to porosity.

View Article and Find Full Text PDF

Particle Markov Chain Monte Carlo Approach to Inference in Transient Surface Kinetics.

J Chem Theory Comput

January 2025

Department of Electrical & Computer Engineering, Stony Brook University, Stony Brook, New York 11794, United States.

In this work, we develop a novel Bayesian approach to study the adsorption and desorption of CO onto a Pd(111) surface, a process of great importance in natural sciences. The motivation for this work comes from the recent availability of time-resolved infrared spectroscopy data and the need for model interpretability and uncertainty quantification in chemical processes. The objective is to learn the relevant parameters that characterize the process: coverage with time, rate constants, activation energies, and pre-exponential factors.

View Article and Find Full Text PDF

Sources analysis and risk assessment of heavy metals in soil in a polymetallic mining area in southeastern Hubei based on Monte Carlo simulation.

Ecotoxicol Environ Saf

December 2024

Chinese Academy of Geological Sciences, China Geology Survey, Ministry of Natural Resources, Beijing 100037, China.

This study investigates the pollution characteristics, spatial patterns, causes, and ecological risks of heavy metals in the soils of the southeastern Hubei polymetallic mining areas, specifically the Jilongshan (JLS) and Tonglushan (TLS) regions, located in the middle and lower reaches of the Yangtze River. The main findings are as follows: (1) Among the heavy metals present in the soil, copper (Cu) has the highest average concentration at 278.54 mg/kg, followed by zinc (Zn) at 161.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!