Production of extended-spectrum β-lactamases (ESBLs) is the one of most widespread and clinically significant mechanism of Enterobacteriaceae resistance towards modern β-lactam antibiotics. There are known 400 ESBLs, with the majority represented by the enzymes of TEM, SHV and CTX-M families. Oligonucleotide microarrays with colorimetric detection have been developed for the purposes of determination of ESBLs and inhibitor-resistant β-lactamases using horseradish peroxidase (HRP). Specific oligonucleotide probes have been designed for the identification of β-lactamase family and important SNPs responsible for the broadening of substrate specificity and tolerance to inhibitors. Multiplex PCR has been developed for simultaneous amplification and labeling of full-size genes of TEM-, SHV- and CTX-M-type β-lactamases with biotin. The labeled target DNA is then hybridized with specific oligonucleotide probes immobilized on a porous membrane support. After hybridization, biotin-labeled DNA duplexes are stained with the streptavidin-HRP conjugate detected colorimetrically. Design of oligonucleotide probes and optimization of hybridization conditions ensure the specificity of all control ESBLs identification. The newly developed method has been successfully used to identify bla(TEM), bla(SHV) and bla(CTX-M) genes in 90 clinical isolates of Enterobacteriaceae: 70% were found to carry bla(TEM), 50% bla(SHV), 50% bla(CTX-M); with the following distribution of CTX-M subclusters: 68% bla(CTX-M-1), 4% bla(CTX-M-2), and 14% bla(CTX-M-9). No ESBL of TEM-type and IRT phenotype assigned to TEM- or SHV-type β-lactamases had been detected; 24.6% of clinical samples show two types of ESBLs simultaneously. A mixture of CTX-M-1-like and SHV-5-like genes was the most abundant combination detected. Membrane microarray technique with colorimetric detection provides both high specificity and effectiveness of screening for ESBL- and IRT-producing samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2010.06.053DOI Listing

Publication Analysis

Top Keywords

oligonucleotide probes
12
oligonucleotide microarrays
8
extended-spectrum β-lactamases
8
colorimetric detection
8
specific oligonucleotide
8
oligonucleotide
5
β-lactamases
5
esbls
5
microarrays horseradish
4
horseradish peroxidase-based
4

Similar Publications

Enhancing early breast cancer detection with APE1-triggered oligonucleotide probes and graphene oxide: The impact of variable AP site modification on sensitivity and specificity.

Talanta

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China. Electronic address:

There is a critical need for inclusive diagnostic platforms to enhance the accuracy of early breast cancer detection. Dysregulated microRNA-1246 (miR-1246), closely linked to the disease progression and recurrence, has emerged as a promising diagnostic and prognostic biomarker for BC. However, achieving simple, rapid, and ultrasensitive quantification of serum miRNAs remains significant challenge.

View Article and Find Full Text PDF

Reusable Biosensor for Easy RNA Detection from Unfiltered Saliva.

Sensors (Basel)

January 2025

Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland.

Biosensors are transforming point-of-care diagnostics by simplifying the detection process and enabling rapid, accurate testing. This study introduces a novel, reusable biosensor designed for direct viral RNA detection from unfiltered saliva, targeting SARS-CoV-2. Unlike conventional methods requiring filtration, our biosensor leverages a unique electrode design that prevents interference from saliva debris, allowing precise measurements.

View Article and Find Full Text PDF

Full sequencing of 100mer sgRNA via tandem mass spectrometry by targeted RNase H digestion with customized probes.

Anal Bioanal Chem

January 2025

Biospring Gesellschaft für Biotechnologie, Alt-Fechenheim 34, Frankfurt am Main, 60386, Germany.

The use of single-guide RNA (sgRNA) for gene editing using the CRISPR Cas9 system has become a powerful technique in various fields, especially with the growing interest in such molecules as therapeutic options in the last years. An important parameter for the use of these molecules is the verification of the correct sgRNA oligonucleotide sequence. Apart from next-generation sequencing protocols, mass spectrometry (MS) has been proven as a powerful technique for this purpose.

View Article and Find Full Text PDF

Background: Infections from the hepatitis B virus (HBV) are a major risk factor for hepatocellular carcinoma, one of the most common types of liver cancer. Circulating cell-free DNA (ccfDNA) in human plasma can be used as a non-invasive biomarker for diagnosing HBV-related liver diseases. The isolation of target ccfDNA sequences is often challenging due to the co-extraction of highly abundant non-target DNA from samples.

View Article and Find Full Text PDF

Engineering 3D microtip gates of all-polymer organic electrochemical transistors for rapid femtomolar nucleic-acid-based saliva testing.

Biosens Bioelectron

January 2025

School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China. Electronic address:

Point-of-care testing (POCT) of trace amount of biomarkers in biofluids is critical towards health monitoring and early diagnosis. In particular, to facilitate non-invasive saliva testing, the development of low-cost, lightweight and disposable biosensors is in urgent need, while the ultrahigh sensitivity beyond conventional clinical tests remains a great challenge. Herein, we demonstrate a simple and fully printable all-polymer organic electrochemical transistor (OECT) biosensor to detect femtomolar (fM)-level biomolecules in saliva within a few minutes by employing highly conducting lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) serving as both the channel and gate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!