Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The extensive period of retinal ganglion cell (RGC) neurogenesis in the rat is associated with a protracted sequence of arrival of their axons into central targets such as the superior colliculus (SC) (Dallimore et al., 2002). Using in utero 5-bromo-2'-deoxyrudine (BrdU) injections to label early (embryonic day (E) 15) or late (E18 or E19) born RGCs, we now show that E15 RGCs with axons that enter the SC prenatally undergo programmed cell death earlier than late-born RGCs whose axons only reach the SC late in the first postnatal week. These late-born RGCs do not begin to die until postnatal day (P) 5/6. Removal of retrograde trophic support by P1 SC ablation initially only affects E15 RGCs; however by P5 death of late-born RGCs is increased, confirming that a switch to target dependency is delayed in this cohort. In a further experiment it was found that, following complete rostral SC transection at P2, the proportion of post-lesion axons originating from E19 RGCs was significantly greater than the proportion that normally makes up the retinotectal projection. Thus, even in neonatal brain, uninjured late-arriving axons are more likely to grow across a lesion site than injured axons undergoing regeneration. To study if birth date also affects regenerative potential in adulthood, autologous peripheral nerve (PN) was grafted onto the cut optic nerve in mature BrdU labelled rats. We found that, compared to E15 RGCs, a significantly greater proportion of late-born RGCs survived axotomy, but comparatively fewer of these surviving E19 RGCs regrew an axon into a graft. In summary, this research shows that the birthdate of RGCs significantly impacts on their subsequent life history and response to injury. Understanding how developing central nervous system (CNS) neurons acquire dependency on target-derived trophic support may lead to new strategies for enhancing survival and regeneration in adult CNS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2010.07.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!