Far-red fluorescent proteins are required for deep-tissue and whole-animal imaging and multicolor labeling in the red wavelength range, as well as probes excitable with standard red lasers in flow cytometry and fluorescence microscopy. Rapidly evolving superresolution microscopy based on the stimulated emission depletion approach also demands genetically encoded monomeric probes to tag intracellular proteins at the molecular level. Based on the monomeric mKate variant, we have developed a far-red TagRFP657 protein with excitation/emission maxima at 611/657 nm. TagRFP657 has several advantages over existing monomeric far-red proteins including higher photostability, better pH stability, lower residual green fluorescence, and greater efficiency of excitation with red lasers. The red-shifted excitation and emission spectra, as compared to other far-red proteins, allows utilizing TagRFP657 in flow cytometry and fluorescence microscopy simultaneously with orange or near-red fluorescence proteins. TagRFP657 is shown to be an efficient protein tag for the superresolution fluorescence imaging using a commercially available stimulated emission depletion microscope.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905082PMC
http://dx.doi.org/10.1016/j.bpj.2010.04.025DOI Listing

Publication Analysis

Top Keywords

red lasers
12
flow cytometry
12
far-red fluorescent
8
lasers flow
8
cytometry fluorescence
8
fluorescence microscopy
8
stimulated emission
8
emission depletion
8
far-red proteins
8
far-red
5

Similar Publications

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

Theoretical basis of all-optical modulation of a probe laser beam due to photothermal modulation of the aggregation state in organic dyes, with experimental proof of the principle.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Anhembi Morumbi University (UAM), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil; Center of Innovation, Technology and Education (CITE), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil. Electronic address:

The inherent potential for self-assembly is a well-known attribute of organic dye molecules. This work takes advantage of the changes in dye photochemical and photophysical properties produced by the aggregation phenomenon, to investigate the behavior of all-optical modulation in molecular aggregates. The theoretical principles for a dual beam all-optical modulation, as well as the conception of an optical logic gate by exploring the aggregation phenomenon are discussed throughout the article.

View Article and Find Full Text PDF

Supercontinuum generation in scintillator crystals.

Sci Rep

January 2025

Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.

We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.

View Article and Find Full Text PDF

Fibrin film on clots is increased by haematocrit but reduced by inflammation: implications for platelets and fibrinolysis.

J Thromb Haemost

January 2025

Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.

Background: Blood clot formation, triggered by vascular injury, is crucial for haemostasis and thrombosis. Blood clots are composed mainly of fibrin fibres, platelets and red blood cells (RBCs). Recent studies show that clot surface also develops a fibrin film, which provides protection against wound infection and retains components such as RBCs within the clot.

View Article and Find Full Text PDF

Authentication of glass beads from Cultural Heritage: An interdisciplinary and multi-analytical approach.

Talanta

January 2025

Instituto de Historia (IH-CCHS), CSIC, C/ Albasanz 26-28, 28037, Madrid, Spain. Electronic address:

Analysis of glass-based artworks is important for authentication purposes. In recent years, there have been rapid advancements and improvements in the characterization of glass objects using different analytical approaches. The present study presents an interdisciplinary and multi-analytical authentication approach that provides useful tools and markers to unmask possible imitations, counterfeiting, and forgeries in Cultural Heritage glass beads by comparing the composition of historical and modern glass beads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!