Release kinetics of VEGF165 from a collagen matrix and structural matrix changes in a circulation model.

Head Face Med

Department of Cranio-Maxillofacial Surgery, Research Unit Vascular Biology of Oral, Structures, University Hospital Muenster, Waldeyerstrasse 30, D-48149 Muenster, Germany.

Published: July 2010

Background: Current approaches in bone regeneration combine osteoconductive scaffolds with bioactive cytokines like BMP or VEGF. The idea of our in-vitro trial was to apply VEGF165 in gradient concentrations to an equine collagen carrier and to study pharmacological and morphological characteristics of the complex in a circulation model.

Methods: Release kinetics of VEGF165 complexed in different quantities in a collagen matrix were determined in a circulation model by quantifying protein concentration with ELISA over a period of 5 days. The structural changes of the collagen matrix were assessed with light microscopy, native scanning electron microscopy (SEM) as well as with immuno-gold-labelling technique in scanning and transmission electron microscopy (TEM).

Results: We established a biological half-life for VEGF165 of 90 minutes. In a half-logarithmic presentation the VEGF165 release showed a linear declining gradient; the release kinetics were not depending on VEGF165 concentrations. After 12 hours VEGF release reached a plateau, after 48 hours VEGF165 was no longer detectable in the complexes charged with lower doses, but still measurable in the 80 microg sample. At the beginning of the study a smear layer was visible on the surface of the complex. After the wash out of the protein in the first days the natural structure of the collagen appeared and did not change over the test period.

Conclusions: By defining the pharmacological and morphological profile of a cytokine collagen complex in a circulation model our data paves the way for further in-vivo studies where additional biological side effects will have to be considered. VEGF165 linked to collagen fibrils shows its improved stability in direct electron microscopic imaging as well as in prolonged release from the matrix. Our in-vitro trial substantiates the position of cytokine collagen complexes as innovative and effective treatment tools in regenerative medicine and and may initiate further clinical research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913915PMC
http://dx.doi.org/10.1186/1746-160X-6-17DOI Listing

Publication Analysis

Top Keywords

release kinetics
12
collagen matrix
12
circulation model
12
vegf165
8
kinetics vegf165
8
collagen
8
in-vitro trial
8
pharmacological morphological
8
complex circulation
8
electron microscopy
8

Similar Publications

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Gas-Releasing Polymer Tubesomes: Boosting Gas Delivery of Nanovehicles via Membrane Stretching.

Angew Chem Int Ed Engl

January 2025

Fudan University, Macromolecular Science, No.220, Handan Road, Yangpu District, 200433, Shanghai, CHINA.

Hydrogen sulfide (H2S), as a gasotransmitter, not only plays a vital role in mediating many cellular activities but also manifests exciting applications in clinical therapy. However, one main obstacle in using H2S as a gaseous therapeutic agent is to realize on-demand storage and delivery of gas, and thus, it is of great importance to develop H2S-donating vehicle platforms. Although a variety of polymer-based gas-releasing carriers have been designed, almost all the systems are limited to spherical structures.

View Article and Find Full Text PDF

Fabrication of Rubus chingii Hu ellagitannins-loaded W/O and O/W emulsion gels: Structure, stability, in vitro digestion and in vivo metabolism.

Int J Biol Macromol

January 2025

National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China. Electronic address:

Tannin is the main naturally occurring phytochemicals in Rubus chingii Hu with poor digestive stability and low bioavailability. In this study, oil-in-water (O/W) and water-in-oil (W/O) emulsion gels encapsulating Rubus chingii Hu ellagitannins (RCHT) were fabricated and their structure, rheology, stability, in vitro digestion and in vivo metabolism were characterized. The W/O emulsion gel showed smaller particle size, better pH stability, thermal stability, centrifugal stability and storage stability.

View Article and Find Full Text PDF

In order to meet global food requirement, innovation in agricultural techniques and pesticide delivery system will be required for sustainable food supply with minimal harmful impact on environment. This article discusses the synthesis of hydrogels for use in controlled release formulations (CRFs) to increase agricultural output while reducing ecotoxicity and health risks. These hydrogels were designed by graft-copolymerization reaction of polyacrylamide and polyvinyl sulfonic acid onto agar-alginate marine polysaccharides.

View Article and Find Full Text PDF

The current investigation intended to assess the controlled delivery of 7-sulfonamide-2-(4-methylphenyl) imidazo[2,1-b] [1, 3] benzothiazole an anticancer agent (ACA) by tamarind seed gum-based hydrogel; for its potential activity against hepatocellular carcinoma. The FTIR spectra, SEM, C NMR, PXRD, and TGA analyses evidenced the successful loading of ACA into the hydrogel system. The rheological testing conveyed the increase in the elastic nature of ACA-loaded hydrogel helping in an effective release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!