Background: According to the different sensitivity of their bone marrow CD34+ cells to in vitro treatment with Etoposide or Mafosfamide, Acute Myeloid Leukaemia (AML) patients in apparent complete remission (CR) after chemotherapy induction may be classified into three groups: (i) normally responsive; (ii) chemoresistant; (iii) highly chemosensitive. This inversely correlates with in vivo CD34+ mobilization and, interestingly, also with the prognosis of the disease: patients showing a good mobilizing activity are resistant to chemotherapy and subject to significantly higher rates of Minimal Residual Disease (MRD) and relapse than the others. Based on its known role in patients' response to chemotherapy, we hypothesized an involvement of the Apoptotic Machinery (AM) in these phenotypic features.
Methods: To investigate the molecular bases of the differential chemosensitivity of bone marrow hematopoietic stem cells (HSC) in CR AML patients, and the relationship between chemosensitivity, mobilizing activity and relapse rates, we analyzed their AM expression profile by performing Real Time RT-PCR of 84 AM genes in CD34+ pools from the two extreme classes of patients (i.e., chemoresistant and highly chemosensitive), and compared them with normal controls.
Results: The AM expression profiles of patients highlighted features that could satisfactorily explain their in vitro chemoresponsive phenotype: specifically, in chemoresistant patients we detected up regulation of antiapoptotic BIRC genes and down regulation of proapoptotic APAF1, FAS, FASL, TNFRSF25. Interestingly, our analysis of the AM network showed that the dysregulated genes in these patients are characterized by high network centrality (i.e., high values of betweenness, closeness, radiality, stress) and high involvement in drug response.
Conclusions: AM genes represent critical nodes for the proper execution of cell death following pharmacological induction in patients. We propose that their dysregulation (either due to inborn or de novo genomic mutations selected by treatment) could cause a relapse in apparent CR AML patients. Based on this, AM profiling before chemotherapy and transplantation could identify patients with a predisposing genotype to MRD and relapse: accordingly, they should undergo a different, specifically tailored, therapeutic regimen and should be carefully checked during the post-treatment period.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914706 | PMC |
http://dx.doi.org/10.1186/1471-2407-10-377 | DOI Listing |
Exp Hematol Oncol
December 2024
Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA.
Cytoplasmic proliferating cell nuclear antigen (PCNA) is highly expressed in acute myeloid leukemia (AML) cells, supporting oxidative metabolism and leukemia stem cell (LSC) growth. We report on AOH1996 (AOH), an oral compound targeting cancer-associated PCNA, which shows significant antileukemic activity. AOH inhibited growth in AML cell lines and primary CD34 + CD38 - blasts (LSC-enriched) in vitro while sparing normal hematopoietic stem cells (HSCs).
View Article and Find Full Text PDFAnn Med
December 2025
Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China.
Background: The management of high-risk acute myeloid leukaemia (AML) remains challenging, highlighting the need for innovative conditioning strategies beyond current regimens.
Methods: In the present single-arm study, a FACT regimen comprised of low-dose total body irradiation (TBI) with fludarabine, cytarabine and cyclophosphamide was employed to treat cytogenetically high-risk AML patients exhibiting pre-transplant active disease. This clinical trial is registered in the Chinese Clinical Trial Registry with the registration number ChiCTR2000035111.
Drug Metab Pharmacokinet
November 2024
Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Nippon Shinyaku Co., Ltd, Japan.
CPX-351 (NS-87; Vyxeos®) has a characteristic liposomal formulation and contains cytarabine and daunorubicin at a 5:1 molar ratio, which demonstrates synergistic activity in both in vitro and in vivo animal models. It has been approved in several countries for the treatment of newly diagnosed, therapy-related acute myeloid leukemia (t-AML) or AML with myelodysplasia-related changes (AML-MRC). Since there are very few Asian patients, especially Japanese adult and pediatric patients, only a small clinical study has been conducted in Japanese adult patients and no study in Japanese pediatric patients.
View Article and Find Full Text PDFHematol Rep
December 2024
Department of Hematology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
Acute myeloid leukemia (AML) is a form of cancer originating from precursor cells within the bone marrow. Elderly patients with acute leukemia require a personalized approach, considering age, performance status, and comorbidities, to determine suitability for intensive treatment. We studied the results of intense chemotherapy in 46 elderly, fit individuals with AML at a cancer center in Romania from January 2017 to December 2023.
View Article and Find Full Text PDFDiseases
December 2024
Department of Pediatrics, Dokkyo Medical University, Tochigi 321-0293, Japan.
Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder characterized by mutations in the TSC1 and TSC2 genes, leading to the dysregulation of the mammalian target of rapamycin (mTOR) pathway. This dysregulation results in the development of benign tumors across multiple organ systems and poses significant neurodevelopmental challenges. The clinical manifestations of TSC vary widely and include subependymal giant cell astrocytomas (SEGAs), renal angiomyolipomas (AMLs), facial angiofibromas (FAs), and neuropsychiatric conditions such as autism spectrum disorder (ASD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!