Garlic has been used medicinally since antiquity because of its antimicrobial activity, anticancer activity, antioxidant activity, ability to reduce cardiovascular diseases, improving immune functions, and antidiabetic activities and also in reducing cardiovascular diseases and improving immune functions. Recent studies identify that the wide variety of medicinal functions are attributed to the sulfur compounds present in garlic. Epidemiological observations and laboratory studies in animal models have also showed anticarcinogenic potential of organosulfur compounds of garlic. In this study, in silico analysis of organosulfur compounds is reported using the methods of theoretical chemistry to elucidate the molecular properties of garlic as it is more time and cost efficient, reduces the number of wet experiments, and offers the possibility of replacing some animal tests with suitable in silico models. The analysis of molecular descriptors defined by Lipinski has been done. The solubility of drug in water has been determined as it is of useful importance in the process of drug discovery from molecular design to pharmaceutical formulation and biopharmacy. All toxicities associated with candidate drug have been calculated. P-Glycoprotein expressed in normal tissues as a cause of drug pharmacokinetics and pharmacodynamics has been examined. Drug-plasma protein binding and volume of distribution have also been calculated. To avoid rejection of drugs, it is becoming more important to determine pK(a), absorption, polar surface area, and other physiochemical properties associated with a drug, before synthetic work is undertaken. The present in silico study is aimed at examining these compounds of garlic to evaluate its possible efficacy and toxicity under conditions of actual use in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biof.102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!