Pattern recognition methods could be of great help to disease diagnosis. In this study, a semi-supervised learning based method, Laplacian support vector machine (LapSVM), was used in diabetes diseases prediction. The diabetes disease dataset used in this article is Pima Indians diabetes dataset obtained from the UCI Repository of Machine Learning Databases and all patients in the dataset are females at least 21 years old of Pima Indian heritage. Firstly, LapSVM was trained as a fully-supervised learning classifier to predict diabetes dataset and 79.17% accuracy was obtained. Then, it was trained as a semi-supervised learning classifier and we got the prediction accuracy 82.29%. The obtained accuracy 82.29% is higher than other previous reports. The experiments led to the finding that LapSVM offers a very promising application, i.e., LapSVM can be used to solve a fully-supervised learning problem by solving a semi-supervised learning problem. The result suggests that LapSVM can be of great help to physicians in the process of diagnosing diabetes disease and it could be a very promising method in the situations where a lot of data are not class-labeled.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12539-009-0016-2 | DOI Listing |
Sci Rep
January 2025
Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.
View Article and Find Full Text PDFSci Rep
January 2025
College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China.
Breast cancer is one of the most aggressive types of cancer, and its early diagnosis is crucial for reducing mortality rates and ensuring timely treatment. Computer-aided diagnosis systems provide automated mammography image processing, interpretation, and grading. However, since the currently existing methods suffer from such issues as overfitting, lack of adaptability, and dependence on massive annotated datasets, the present work introduces a hybrid approach to enhance breast cancer classification accuracy.
View Article and Find Full Text PDFSci Rep
January 2025
Ministry of Higher Education, Mataria Technical College, Cairo, 11718, Egypt.
The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt.
View Article and Find Full Text PDFJ Am Med Inform Assoc
January 2025
Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia.
Objective: We aimed to develop a highly interpretable and effective, machine-learning based risk prediction algorithm to predict in-hospital mortality, intubation and adverse cardiovascular events in patients hospitalised with COVID-19 in Australia (AUS-COVID Score).
Materials And Methods: This prospective study across 21 hospitals included 1714 consecutive patients aged ≥ 18 in their index hospitalization with COVID-19. The dataset was separated into training (80%) and test sets (20%).
Updates Surg
January 2025
Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
Clinical risk prediction models are ubiquitous in many surgical domains. The traditional approach to develop these models involves the use of regression analysis. Machine learning algorithms are gaining in popularity as an alternative approach for prediction and classification problems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!