Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Machine learning methods play the very important role in protein secondary structure prediction and other related works. On condition of a certain approach, the prediction qualities mostly depend on the ways of representing protein sequences into numeric features. In this paper, two Support Vector Machine (SVM) multi-classification strategies, "one-against-one" (1-a-1) and "one-against-all" (1-a-a), were used in protein structural classes identification. Auto covariance (AC), which transforms the physicochemical properties of the amino acids of the proteins into a data matrix, focuses on the neighboring effects and the interactions between residues in protein sequences. "1-a-1" approach was used on SVM to predict protein structural classes and obtained very promising overall accuracy 90.69% by Jackknife test. It was more than 10% higher than the accuracy obtained by using "1-a-a". Experimental results led to the finding that the SVM predictor constructed by "1-a-1" can avoid the appearance of biased prediction accuracy. This current method, using the protein primary sequence information described by auto covariance (AC) and "1-a-1" approach on SVM, should play an important complementary role in other related applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12539-009-0066-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!