Sepsis is a leading cause of mortality in critically ill patients. The pathophysiology of sepsis involves a highly complex and integrated response, including the activation of various cell types, inflammatory mediators, and the haemostatic system. Recent evidence suggests an emerging role of the microcirculation in sepsis, necessitating a shift in our locus away Irom the macrohaemodynamics to ill icrohaemodynanmics in a septic patient. This review article provides a brief overview of the microcirculation, its assessment techniques, and specific therapies to resuscitate the microhaemodynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900118 | PMC |
Background: High levels of catecholamines are cardiotoxic and associated with stress-induced cardiomyopathies. Septic patients are routinely exposed to endogenously released and exogenously administered catecholamines, which may alter cardiac function and perfusion causing ischemia. Early during human septic shock, left ventricular ejection fraction (LVEF) decreases but normalizes in survivors over 7-10 days.
View Article and Find Full Text PDFMed Intensiva (Engl Ed)
January 2025
Intensive Care Unit, Adesh Medical College and Hospital, NH44, Mohri, Ambala, Haryana-136135, India; Department of Anaesthesiology and Critical Care, Command Hospital (NC), Udhampur 182101, India. Electronic address:
Int J Biol Macromol
January 2025
Department of Physiology, Navy Medical University, Shanghai 200433, China. Electronic address:
In the mammalian cardiovascular system, endothelial glycocalyx is a gel-like layer that covers the luminal surface of endothelial cells (ECs) and plays crucial roles in vascular homeostasis, permeability and leukocyte adhesion. Degradation of this structure occurs early in sepsis and becomes accordingly dysfunctional. In severe cases, it is not self-regulated by the organism.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, 168 Litang Road, Changping District, Beijing 102218, China.
The monitoring of peripheral circulation, as indicated by the capillary refill time, is a sensitive and accurate method of assessing the microcirculatory status of the body. It is a widely used tool for the evaluation of critically ill patients, the guidance of therapeutic interventions, and the assessment of prognosis. In recent years, there has been a growing emphasis on microcirculation monitoring which has led to an increased focus on capillary refill time.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland.
Severe COVID-19 is associated with a generalized inflammatory response leading to peripheral and organ perfusion disorders. : This study aimed to evaluate the usefulness of peripheral and organ perfusion assessments in the prediction of prognosis and mortality in patients with severe COVID-19. : In the first 48 h of hospitalization, peripheral perfusion (saturation, Finger Infrared Thermography-FIT; Capillary Refill Time-CRT), and the color Doppler renal cortex perfusion (RCP) were estimated in a group of 102 severe COVID-19 patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!