A statistical theory for crosstalk in multicore fibers is derived from coupled-mode equations including bend-induced perturbations. Bends are shown to play a crucial role in crosstalk, explaining large disagreement between experiments and previous calculations. The average crosstalk of a fiber segment is related to the statistics of the bend radius and orientation, including spinning along the fiber length. This framework allows efficient and accurate estimates of cross-talk for realistic telecommunications links.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.18.015122 | DOI Listing |
Commun Eng
December 2024
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China.
Rapid and accurate determination of target proteins in cells provide essential diagnostic information for early detection of diseases, evaluation of drug responses, and the study of pathophysiological mechanisms. Traditional Western blotting method has been used for the determination, but it is complex, time-consuming, and semi-quantitative. Here, a tapered seven-core fiber (TSCF) biosensor was designed and fabricated.
View Article and Find Full Text PDFCommonly used linear equalizers in optical transmissions may induce in-band noise enhancement in the high-frequency region, degrading signaling performance. In this Letter, we propose for the first, to our knowledge, time, to mitigate the multi-input-multi-output (MIMO) equalizer-enhanced noise (EEN) in coupled-core multicore fiber (CC-MCF) systems by utilizing the spectral shaping (SS) filter and maximum likelihood sequence detection (MLSD), which have shown effective EEN mitigation in SMF systems. However, CC-MCF systems feature multiple spatial channels, each requiring separate coefficient optimization for SS filters corresponding to each output of MIMO.
View Article and Find Full Text PDFIn this Letter, we propose a new method utilizing femtosecond laser direct writing technology to rapidly inscribe high-quality tilted fiber Bragg gratings (TFBGs) in multicore fibers (MCFs). A series of TFBGs with varying tilt angles were directly inscribed in MCFs using the Plane-by-Plane (Pl-by-Pl) method, and the writing time for a 4 mm long TFBG was only 3.60 s.
View Article and Find Full Text PDFNanophotonics
March 2024
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
We report the fabrication and characterization of a multi-core anti-resonant hollow core fiber with low inter-core coupling. The optical losses were 0.03 and 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!