Metal ion cofactors afford proteins virtually unlimited catalytic potential, enable electron transfer reactions and have a great impact on protein stability. Consequently, metalloproteins have key roles in most biological processes, including respiration (iron and copper), photosynthesis (manganese) and drug metabolism (iron). Yet, predicting from genome sequence the numbers and types of metal an organism assimilates from its environment or uses in its metalloproteome is currently impossible because metal coordination sites are diverse and poorly recognized. We present here a robust, metal-based approach to determine all metals an organism assimilates and identify its metalloproteins on a genome-wide scale. This shifts the focus from classical protein-based purification to metal-based identification and purification by liquid chromatography, high-throughput tandem mass spectrometry (HT-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) to characterize cytoplasmic metalloproteins from an exemplary microorganism (Pyrococcus furiosus). Of 343 metal peaks in chromatography fractions, 158 did not match any predicted metalloprotein. Unassigned peaks included metals known to be used (cobalt, iron, nickel, tungsten and zinc; 83 peaks) plus metals the organism was not thought to assimilate (lead, manganese, molybdenum, uranium and vanadium; 75 peaks). Purification of eight of 158 unexpected metal peaks yielded four novel nickel- and molybdenum-containing proteins, whereas four purified proteins contained sub-stoichiometric amounts of misincorporated lead and uranium. Analyses of two additional microorganisms (Escherichia coli and Sulfolobus solfataricus) revealed species-specific assimilation of yet more unexpected metals. Metalloproteomes are therefore much more extensive and diverse than previously recognized, and promise to provide key insights for cell biology, microbial growth and toxicity mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature09265 | DOI Listing |
Front Plant Sci
December 2024
State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China.
Introduction: The species is a typical shrub with assimilative branches (ABs) in arid regions in Central Asia. The nutrient distribution patterns at different reproductive stages are of great significance for further understanding the ecological adaptation and survival strategies of plants.
Methods: In the present study, a common garden experiment was employed to avoid interference by environmental heterogeneity.
Although we have evidence that many organisms are exhibiting declines in body size in response to climate warming, we have little knowledge of underlying mechanisms or how associated phenotypic suites may coevolve. The better we understand coadaptations among physiology, morphology, and life history, the more accurate our predictions will be of organismal response to changing thermal environments. This is especially salient for ectotherms because they comprise 99% of species worldwide and are key to functioning ecosystems.
View Article and Find Full Text PDFSci Total Environ
December 2024
Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, United States of America.
Med Sci (Paris)
December 2024
SPHERE (sciences, philosophie, histoire), UMR 7219, CNRS, université Paris-Cité, Paris, France.
Even today, 'epigenetics' is a rather difficult field to define. The explosive growth of epigenetics over the last twenty years is sometimes seen as a revolutionary event in the life sciences, a paradigm shift that would devalue genetics or the standard view of the evolutionary synthesis. The aim of this paper is to place this controversial issue in its historical context.
View Article and Find Full Text PDFAnn Bot
December 2024
Université de Montpellier, INRAE, UMR LEPSE, 2 Place Viala 34060 Montpellier, France.
Backgrounds And Aims: Shading, water deficit, and crop load shape plant development in a very plastic way. They directly influence the plant's carbon supply and demand to and from the different organs via metabolic, hydraulic and hormonal mechanisms. However, how the multiple environmental factors combine through these mechanisms and how they interplay with carbon status, vegetative and reproductive development and carbon assimilation of the plant needs to be investigated in the context of current climatic and technological constraints.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!