Geniculate axons are initially guided to discrete epithelial placodes in the lingual and palatal epithelium that subsequently differentiate into taste buds. In vivo approaches show that brain-derived neurotrophic factor (BDNF) mRNA is concentrated in these placodes, that BDNF is necessary for targeting taste afferents to these placodes, and that BDNF misexpression disrupts guidance. We used an in vitro approach to determine whether BDNF may act directly on geniculate axons as a trophic factor and as an attractant, and whether there is a critical period for responsiveness to BDNF. We show that BDNF promotes neurite outgrowth from geniculate ganglion explants dissected from embryonic day (E) 15, E18, infant, and adult rats cultured in collagen gels, and that there is a concentration optimum for neurite extension. Gradients of BDNF derived from slow-release beads caused the greatest bias in neurite outgrowth at E15, when axons approach the immature gustatory papillae. Further, neurites advanced faster toward the BDNF bead than away from it, even if the average amount of neurotrophic factor encountered was the same. We also found that neurites that contact BDNF beads did not advance beyond them. At E18, when axons would be penetrating pregustatory epithelium in vivo, BDNF continued to exert a tropic effect on geniculate neurites. However, at postnatal and adult stages, the influence of BDNF was predominantly trophic. Our data support a role for BDNF acting as an attractant for geniculate axons during a critical period that encompasses initial targeting but not at later stages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214840PMC
http://dx.doi.org/10.1159/000313902DOI Listing

Publication Analysis

Top Keywords

neurotrophic factor
12
geniculate axons
12
bdnf
12
brain-derived neurotrophic
8
geniculate ganglion
8
placodes bdnf
8
critical period
8
neurite outgrowth
8
geniculate
6
axons
5

Similar Publications

Pan-neurofascin autoimmune nodoparanodopathy: A case report and literature review.

Medicine (Baltimore)

January 2025

Department of Neurology (Nerve-Muscle Unit), Reference Center for Neuromuscular Diseases "AOC," ALS Reference Center, University Hospitals of Bordeaux (Pellegrin Hospital), University of Bordeaux, Bordeaux, France.

Rationale: Locked-in syndrome (and its variant, completely locked-in state) generally has a high mortality rate in the acute setting; however, when induced by conditions such as acute inflammatory polyradiculoneuropathy, it may well be curable such that an attempt at cure should be systematically sought by clinicians.

Patient Concerns: A 52-year-old man presented with acute tetraparesia and areflexia, initially diagnosed as Guillain-Barré syndrome. Despite appropriate treatment, his condition deteriorated, evolving into a completely locked-in state.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common cancers worldwide and inflammation is believed to play an important role in CRC. In this study, we comprehensively analyzed the causal association between 91 circulating inflammatory cytokines and the risk of CRC using Mendelian randomization (MR). Based on genome-wide association study summary statistics, we examined the causal effects of 91 circulating inflammatory cytokines on CRC.

View Article and Find Full Text PDF

Neural Plasticity in Migraine Chronification.

Eur J Neurosci

January 2025

Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland.

Chronic migraine (CM) is the ultimate and most burdensome form of the transformation from episodic migraine (EM), called chronification. The mechanism behind migraine chronification is poorly known and difficult to explore as CM has the same spectrum of pathogenesis as EM and the EM-CM transition is bidirectional. Central sensitization (CS) is a key phenomenon in migraine: its mechanisms include disturbed neural plasticity, which is the ability of the nervous system to adapt to endo- and exogenous changes.

View Article and Find Full Text PDF

This study, in vivo and in vitro, investigated the role of brain-derived neurotrophic factor (BDNF) in skeletal muscle adaptations to aerobic exercise. BDNF is a contraction-induced protein that may play a role in muscle adaptations to aerobic exercise. BDNF is involved in muscle repair, increased fat oxidation, and mitochondrial biogenesis, all of which are adaptations observed with aerobic training.

View Article and Find Full Text PDF

Sarcopenia and cancer cachexia are two life-threatening conditions often misdiagnosed. The skeletal muscle is one of the organs most adversely affected by these conditions, culminating in poor quality of life and premature mortality. In addition, it has been suggested that chemotherapeutic agents exacerbate cancer cachexia, as is the case of doxorubicin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!