Human airway cilia contain soluble adenylyl cyclase (sAC) that produces cAMP upon HCO(3)(-)/CO(2) stimulation to increase ciliary beat frequency (CBF). Because apical HCO(3)(-) exchange depends on cystic fibrosis transmembrane conductance regulator (CFTR), malfunctioning CFTR might impair sAC-mediated CBF regulation in cells from patients with cystic fibrosis (CF). By Western blot, sAC isoforms are equally expressed in normal and CF airway epithelial cells, but CBF decreased more in CF than normal cells upon increased apical HCO(3)(-)/CO(2) exposure in part because of greater intracellular acidification from unbalanced CO(2) influx (estimated by 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) fluorescence). Importantly, ciliated cell-specific cAMP production (estimated by FRET fluorescence ratio changes of tagged cAMP-dependent protein kinase (PKA) subunits expressed under a ciliated cell-specific promoter) in response to increased apical HCO(3)(-)/CO(2) perfusion was higher in normal compared with CF cells. Inhibition of bicarbonate influx via CFTR (CFTR(inh)172) and inhibition of sAC (KH7) and PKA activation (H89) led to larger CBF declines in normal cells, now comparable with changes seen in CF cells. These inhibitors also reduced FRET changes in normal cells to the level of CF cells with the expected exception of H89, which does not prevent dissociation of the fluorescently tagged PKA subunits. Basolateral permeabilization and subsequent perfusion with HCO(3)(-)/CO(2) rescued CBF and FRET changes in CF cells to the level of normal cells. These results suggest that CBF regulation by sAC-produced cAMP could be impaired in CF, thereby possibly contributing to mucociliary dysfunction in this disease, at least during disease exacerbations when airway acidification is common.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943327 | PMC |
http://dx.doi.org/10.1074/jbc.M110.113621 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!