Antimicrobial activity of simulated solar disinfection against bacterial, fungal, and protozoan pathogens and its enhancement by riboflavin.

Appl Environ Microbiol

Department of Infection, Immunity and Inflammation, University of Leicester, Medical Sciences Building, P.O. Box 138, University Road, Leicester LE1 9HN, United Kingdom.

Published: September 2010

Riboflavin significantly enhanced the efficacy of simulated solar disinfection (SODIS) at 150 watts per square meter (W m(-2)) against a variety of microorganisms, including Escherichia coli, Fusarium solani, Candida albicans, and Acanthamoeba polyphaga trophozoites (>3 to 4 log(10) after 2 to 6 h; P < 0.001). With A. polyphaga cysts, the kill (3.5 log(10) after 6 h) was obtained only in the presence of riboflavin and 250 W m(-2) irradiance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935077PMC
http://dx.doi.org/10.1128/AEM.00445-10DOI Listing

Publication Analysis

Top Keywords

simulated solar
8
solar disinfection
8
antimicrobial activity
4
activity simulated
4
disinfection bacterial
4
bacterial fungal
4
fungal protozoan
4
protozoan pathogens
4
pathogens enhancement
4
enhancement riboflavin
4

Similar Publications

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

To improve maneuverability, the focus of photoelectric theodolites is on reducing the weight of the primary mirror and enhancing its optical performance. This study uses MOAT and Sobol methods to identify key parameters that affect design. Using the high-sensitivity part as the optimization domain, six optimization results were obtained based on the multi-objective SIMP topology optimization method and synthesized into a compromise optimization structure.

View Article and Find Full Text PDF

Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.

View Article and Find Full Text PDF

The present article focuses on the characterization of the new biocomposites of poly(butylene succinate) (PBS) with fillers of plant origin such as onion peels (OP) and durum wheat bran WB () subjected to composting and artificial aging. The susceptibility to fungal growth, cytotoxicity and antibacterial properties were also examined. The biodegradation of the samples was investigated under normalized conditions simulating an intensive aerobic composting process.

View Article and Find Full Text PDF

Photocatalytic water disinfection technology is highly promising in off-grid areas due to abundant year-round solar irradiance. However, the practical use of powdered photocatalysts is impeded by limited recovery and inefficient inactivation of stress-resistant bacteria in oligotrophic surface water. Here we prepare a floatable monolithic photocatalyst with ZIF-8-NH loaded Ag single atoms and nanoparticles (Ag/ZIF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!