Oxidative stress has been reported to increase during aging and conditions of hypoxia. Although low oxygen saturation has a key role in the development of several age-related diseases, the underlying mechanisms are still unknown. We analyzed the relationship between aging and hypoxia by examining oxidative stress and inflammation-related cytokines. We collected blood samples from three volunteer experimental groups, consisting of one group of normoxic middle-aged people and two groups of individuals older than 75 years, which comprised a subgroup of normoxic subjects and another with oxyhemoglobin saturation lower than 95% (hypoxic). Our results showed a fall in antioxidant defenses in older people with hypoxia. TNF-alpha, the first element in the cytokine cascade, was significantly increased in the aged population, implying that aging is accompanied by a gradual increase in this inflammatory biomarker. IL-6 was not associated with aging, but it was highly elevated under hypoxia conditions in elderly subjects. Thus, these parameters could be used as biological markers of different inflammatory processes triggered by oxidative stress induced by a decrease in antioxidant defenses in the elderly population, with TNF-alpha as an indicator of chronic processes, such as aging, and IL-6 as a marker for acute responses, such as hypoxia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.019DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
antioxidant defenses
8
aging
6
hypoxia
5
differential inflammatory
4
inflammatory responses
4
responses aging
4
aging disease
4
disease tnf-alpha
4
tnf-alpha il-6
4

Similar Publications

This prospective observational study aimed to compare abdominal hysterectomy (AH), vaginal hysterectomy (VH), and total laparoscopic hysterectomy (TLH) in terms of oxidative stress (OS) by measuring serum levels of total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI). Of the 3 groups, namely, AH, VH, and TLH, 22 patients were enrolled in each to investigate the aim of the study mentioned above. Patient demographics, clinical and surgical characteristics, and preoperative and postoperative (0th and 24th hours) serum TAS, TOS, and OSI levels were investigated.

View Article and Find Full Text PDF

Objective: The pathophysiology of delayed cerebral ischemia (DCI) is not fully elucidated. The lack of accurate diagnostic tools increases the probability of delayed diagnosis and timely treatment. The authors assessed the relationship of 8-iso-prostaglandin F2α (F2-IsoP) and oxidative stress biomarkers, nitric oxide synthase 3 (NOS3) and nicotinamide adenine dinucleotide phosphate (NADPH), with DCI after aneurysmal subarachnoid hemorrhage (aSAH).

View Article and Find Full Text PDF

20% acute pancreatitis (AP) develops into severe AP (SAP), a global health crisis, with an increased mortality rate to 30%-50%. Mitochondrial damage and immune disorders are direct factors, which exacerbate the occurrence and progression of AP. So far, mitochondrial and immunity injury in SAP remains largely elusive, with no established treatment options available.

View Article and Find Full Text PDF

Cryo-EM structure and regulation of human NAD kinase.

Sci Adv

January 2025

Atelier de Biologie Chimie Informatique Structurale, Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.

Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a crucial reducing cofactor for reductive biosynthesis and protection from oxidative stress. To fulfill their heightened anabolic and reductive power demands, cancer cells must boost their NADPH production. Progrowth and mitogenic protein kinases promote the activity of cytosolic NAD kinase (NADK), which produces NADP, a limiting NADPH precursor.

View Article and Find Full Text PDF

Circadian rhythm disruption, commonly caused by factors such as jet lag and shift work, is increasingly recognized as a critical factor impairing wound healing. Although melatonin is known to regulate circadian rhythms and has potential in wound repair, its clinical application is limited by low bioavailability. To address these challenges, we developed an alginate-based dual-network hydrogel as a delivery system for melatonin, ensuring its stable and sustained release at the wound site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!