A method in combination of acid leaching, chemical exchange and ferrite process was applied to recycle copper and confer higher chemical stability to the sludge generated from etching process in printed circuit board industry. Ninety-five percent copper could be recycled in the form of powder from the sludge. Moreover, not only the wastewater after chemical exchange can be treated to fulfill the effluent standard, but also the sludge can satisfy the toxicity characteristic leaching procedure (TCLP) limits made by Taiwan's environmental protection administration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2010.05.111DOI Listing

Publication Analysis

Top Keywords

chemical exchange
12
acid leaching
8
leaching chemical
8
exchange ferrite
8
ferrite process
8
recycling powder
4
powder industrial
4
sludge
4
industrial sludge
4
sludge combined
4

Similar Publications

Background: Per- and polyfluoroalkyl substances (PFAS) comprise thousands of fluorinated chemicals. They are of growing concern because many PFAS compounds are persistent and toxic. Food contact materials (FCM) containing PFAS pose multiple exposure pathways to humans, prompting twelve states to enact laws banning FCM with PFAS levels exceeding 100 ppm of TOF.

View Article and Find Full Text PDF

Advances in waste-derived functional materials for PFAS remediation.

Biodegradation

January 2025

Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia.

Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluoride compounds, widely used in industries since the 1950s for their hydrophobic properties. PFAS contamination of soil and water poses significant environmental and public health risks due to their persistence, chemical stability, and resistance to degradation. The Chemical Abstracts Service catalogs approximately 4300 PFAS globally.

View Article and Find Full Text PDF

4-O-Methylglucaric Acid Production from Xylan with Uronic Acid Oxidase and Comparison to Glucaric Acid from Glucose.

Chembiochem

January 2025

Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada.

This study describes an enzymatic pathway to produce high purity 4-O-methylglucaric acid from xylan, an underutilized fraction of lignocellulosic biomass. Beechwood xylan was enzymatically hydrolysed using a commercial xylanase and an α-glucuronidase from Amphibacillus xylanus to form 4-O-methylglucuronic acid, which was then purified by anion exchange chromatography and subsequently oxidized to 4-O-methylglucaric acid using a recombinantly produced uronic acid oxidase from Citrus sinensis. Enzymatic oxidation with uronic acid oxidase afforded 95 % yield in 72 hours which is considerably higher than yields previously achieved using a glucooligosaccharide oxidase from Sarocladium strictum.

View Article and Find Full Text PDF

Purpose: To optimize a 100 ms pulse for producing CEST MRI contrast and evaluate in mice.

Methods: A gradient ascent algorithm was employed to generate a family of 100 point, 100 ms pulses for use in CEST pulse trains (proton resonance enhancement for CEST imaging and shift exchange). Gradient ascent optimizations were performed for exchange rates = 500, 1500, 2500, 3500, and 4500 s; and labile proton offsets (Δω) = 9.

View Article and Find Full Text PDF

Chirality of sub-nanometer nanowires/nanobelts.

Nanoscale

January 2025

School of Chemistry and Chemical Engineering, Beijing Institution of Technology (BIT), Beijing 100081, P. R. China.

Chirality is a widespread phenomenon in the fields of nature and chemicals, endowing compounds with distinctive chemical and biological characteristics. The conventional synthesis of chiral nanomaterials relies on the introduction of chiral ligands or additives and environmental factors such as solvents and mechanical forces. Sub-nanometer nanowires (SNWs) and sub-nanometer nanobelts (SNBs) are one-dimensional nanomaterials with high anisotropy, nearly 100% atomic exposure ratio and some other distinctive characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!