Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Micro-free flow electrophoresis (microFFE) is a technique that facilitates continuous separation of molecules in a shallow channel with a hydrodynamic flow and an electric field at an angle to the flow. We recently developed a general theory of microFFE that suggested that an electric field non-orthogonal to the flow could improve resolution. Here, we used computer modeling to study resolution as a function of the electric field strength and the angle between the electric field and the hydrodynamic flow. In addition we used our general theory of microFFE to investigate other important influences on resolution, which include the velocity of the hydrodynamic flow, the height of the separation channel, and the magnitude and direction of the electroosmotic flow. Finally, we propose four designs that could be used to generate non-orthogonal electric fields and discuss their relative merits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2010.06.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!