In the present work the tautomerics equilibria in 3-hydroxy-4-methyl-4-pentenonitrile and 4-methyl-3-oxo-4-pentenonitrile have been studied. The first compound presents two possible theoretical tautomers, nitrile and ketenimine. The second compound presents four possible theoretical tautomers ketonitrile, nitrile-enol (E and Z) and keto-ketenimine. The study of the equilibrium in gas phase was performed by gas chromatography-mass spectrometry (GC-MS), and in solution by proton nuclear magnetic resonance spectrometry ((1)H NMR). In gas phase, the ketonitrile tautomer was favoured, a result which was supported by theoretical calculations by the use of AM1 semi-empiric calculation. The experimental tautomerization heat values were in good agreement with the theoretical ones. The (1)H NMR spectra gave the additional evidence for the coexistence of the tautomers ketonitrile and enolnitrile for 4-methyl-3-oxo-4-pentenonitrile. The nitrile-ketenimine equilibrium for both compounds could not be observed by (1)H NMR spectra because of the low sensibility of this method. The ketonitrile-enolnitrile tautomerization heat of 4-methyl-3-oxo-4-pentenonitrile has been calculated and compared with the corresponding one in gas phase to evaluate the solvent effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2010.04.003 | DOI Listing |
J Therm Biol
January 2025
General Surgery, Department of Anesthesiology and Operating Room, School of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
Objective: Laparoscopic cholecystectomy is a common procedure for gallbladder diseases, but many patients experience shoulder pain due to pneumoperitoneum. This study investigates the comparative effectiveness of warm carbon dioxide gas insufflation versus local heat application in reducing shoulder pain after laparoscopic cholecystectomy. We also examined changes in body temperature during surgery and postoperative shivering in the intervention and control groups.
View Article and Find Full Text PDFChem Rec
January 2025
Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.
View Article and Find Full Text PDFSmall
January 2025
National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.
Electrochemical CO reduction (CORR) in membrane electrode assembly (MEA) represents a viable strategy for converting CO into value-added multi-carbon (C) compounds. Therefore, the microstructure of the catalyst layer (CL) affects local gas transport, charge conduction, and proton supply at three-phase interfaces, which is significantly determined by the solvent environment. However, the microenvironment of the CLs and the mechanism of the solvent effect on C selectivity remains elusive.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
CNRS, IRCELYON, UMR 5256, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France.
While biomass burning (BB) is the largest source of fine particles in the atmosphere, the influence of relative humidity (RH) and photochemistry on BB secondary organic aerosol (BB-SOA) formation and aging remains poorly constrained. These effects need to be addressed to better capture and comprehend the evolution of BB-SOA in the atmosphere. Cresol (CHO) is used as a BB proxy to investigate these effects.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.
Accurate rovibrational molecular models are employed to gain insight in high-resolution into the collective effects and intermolecular processes arising when molecules in the gas phase interact with a resonant infrared (IR) radiation mode. An efficient theoretical approach is detailed, and numerical results are presented for the HCl, H2O, and CH4 molecules confined in an IR cavity. It is shown that by employing a rotationally resolved model for the molecules, revealing the various cavity-mediated interactions between the field-free molecular eigenstates, it is possible to obtain a detailed understanding of the physical processes governing the energy level structure, absorption spectra, and dynamic behavior of the confined systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!