Pomegranates have high levels of polyphenols (PPs) and may be a rich source of compounds with antiviral activity. We evaluated the direct anti-influenza activity of three commercially available pomegranate extracts: pomegranate juice (PJ), a concentrated liquid extract (POMxl), and a 93% PP powder extract (POMxp). The acidity of PJ and POMxl solutions contributed to rapid anti-influenza activity, but this was not a factor with POMxp. Studies using POMxp showed that 5min treatment at room temperature with 800μg/ml PPs resulted in at least a 3log reduction in the titers of influenza viruses PR8 (H1N1), X31 (H3N2), and a reassortant H5N1 virus derived from a human isolate. However, the antiviral activity was less against a coronavirus and reassortant H5N1 influenza viruses derived from avian isolates. The loss of influenza infectivity was frequently accompanied by loss of hemagglutinating activity. PP treatment decreased Ab binding to viral surface molecules, suggesting some coating of particles, but this did not always correlate with loss of infectivity. Electron microscopic analysis indicated that viral inactivation by PPs was primarily a consequence of virion structural damage. Our findings demonstrate that the direct anti-influenza activity of pomegranate PPs is substantially modulated by small changes in envelope glycoproteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114265 | PMC |
http://dx.doi.org/10.1016/j.antiviral.2010.06.014 | DOI Listing |
Molecules
December 2024
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
Influenza is a disease of significant morbidity and mortality. The number of anti-influenza drugs is small; many of them stimulate the appearance of resistant strains. This article presents the results of assessing the antiviral activity of 1,2,3-triazole-containing derivatives of alkaloid lupinine for their ability to suppress the reproduction of orthomyxoviruses (influenza viruses: A/Vladivostok/2/09 (H1N1) and A/Almaty/8/98 (H3N2)).
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address:
This study focuses on the elucidation of the structure and antiviral properties of six nitrogen-containing compounds including amino acid derivates (1 and 2) and heterocyclic compounds (3-6) isolated from the fruiting bodies of Sarcodon imbricatus, particularly Compound 2, an (S)-2-(hydroxyimino)-3-methylpentanoic acid ethyl ester. Their antiviral effects were tested against influenza A virus (IAV) in A549 cells. Particularly, Compound 2 exhibited significant antiviral activity in post-treatment assays, reducing viral protein expression and inhibiting viral replication with an IC of 14.
View Article and Find Full Text PDFJ Med Chem
December 2024
Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Shenzhen Grubbs Institute and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518000, China.
The genetic recombination and antigenic variation of influenza viruses may decrease the efficacy of antiviral vaccines, highlighting the imperativeness of developing novel anti-influenza agents. Herein, a series of thiophene-based compounds were designed and synthesized as potent anti-influenza agents. Among them, exhibited an excellent anti-influenza activity (EC, H1N1 = 1.
View Article and Find Full Text PDFJ Med Chem
December 2024
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China.
Inspired by our previous finding that targeting the 150-cavity with a multisite-binding strategy emerged as an effective approach to obtain more potent and selective neuraminidase (NA) inhibitors against influenza virus, we present here the design, synthesis, and optimization of novel boron-containing N-substituted oseltamivir (OSC) derivatives. Exploratory structure-activity relationship (SAR) studies led to the identification of compounds and as the most potent NA inhibitors, surpassing OSC in potency against both wild-type group-1 NAs and oseltamivir-resistant NAs. These compounds demonstrated significant antiviral activity against several wild-type strains and H1N1pdm09 strains (EC = 0.
View Article and Find Full Text PDFJ Med Virol
December 2024
Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
In recent decades, epidemics and pandemics have multiplied throughout the world, with viruses generally being the primary responsible agents. Among these, influenza viruses play a key role, as they potentially cause severe respiratory distress, representing a major threat to public health. Our study aims to develop new broad-spectrum antivirals against influenza to improve the response to viral disease outbreaks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!