A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

From epoxycarotenoids to ABA: the role of ABA 8'-hydroxylases in drought-stressed maize roots. | LitMetric

From epoxycarotenoids to ABA: the role of ABA 8'-hydroxylases in drought-stressed maize roots.

Arch Biochem Biophys

Department of Biological Sciences, Lehman College, The City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.

Published: December 2010

The ability of plants to withstand drought, a potentially major constraint to yield and production, is influenced by abscisic acid (ABA). ABA is synthesized in the cytosol from plastid carotenoid pathway derived precursors, and later inactivated by the action of ABA hydroxylases. Endogenous accumulation of ABA is controlled by both its synthesis and catabolism. Enzymatic activity of ABA 8'-hydroxylase (ABA8Ox), also referred to as CYP707A, is considered one of the key steps in modulating ABA levels that control numerous physiological processes. To investigate the role of this enzyme, maize ABA8Ox gene family members were identified. ABA8Ox gene expression was then analyzed in different tissues and roots during the drought-stress response in maize. These genes were found to be expressed in all tissues, with a high degree of specificity to each tissue and some degree of overlap. Maize ABA8Ox1a and ABA8Ox1b were shown to be the major transcript components for regulating ABA catabolism in drought-stressed roots. Phylogenetic and gene-structure analyses were performed to extend the implications and infer the cause of ABA catabolism in other cereal crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957537PMC
http://dx.doi.org/10.1016/j.abb.2010.07.005DOI Listing

Publication Analysis

Top Keywords

aba
9
aba8ox gene
8
aba catabolism
8
epoxycarotenoids aba
4
aba role
4
role aba
4
aba 8'-hydroxylases
4
8'-hydroxylases drought-stressed
4
maize
4
drought-stressed maize
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!