Characterization of hematopoietic potential of mesenchymal stem cells.

J Cell Physiol

Department of Medicine, Applied Stem Cell Laboratory, Heart and Vascular Institute, Tulane University Health Science Center, New Orleans, Louisiana 70112, USA.

Published: November 2010

AI Article Synopsis

  • Adult stem cells found in mesenchymal and hematopoietic tissues have potential for differentiation into various cell types.
  • Researchers tested if adipose tissue-derived mesenchymal stem cells (ASCs) could produce hematopoietic-like cells.
  • The study showed that ASCs can develop into functional macrophage-like cells, indicating their potential use in cell therapy.

Article Abstract

Mesenchymal and hematopoietic tissues are important reservoirs of adult stem cells. The potential of tissue resident mesenchymal stem cells (MSCs) to differentiate into cells of mesodermal and ectodermal lineages has been reported previously. We examined the hypothesis that adherent adipose tissue resident mesenchymal stem cells (ASCs) are capable of generating cells with hematopoietic characteristics. When cultured in differentiation media, clonally isolated ASCs develop into cells with hematopoietic attributes. The hematopoietic differentiated cells (HD) express early hematopoietic (c-kit, PROM1, CD4) as well as monocyte/macrophage markers (CCR5, CD68, MRC1, CD11b, CSF1R). Additionally, HD cells display functional characteristics of monocyte/macrophages such as phagocytosis and enzymatic activity of α-Naphthyl Acetate Esterase. HD cells are also responsive to stimulation by IL-4 and LPS as shown by increased CD14 and HLA-DRB1 expressions and release of IL-2, IL10, and TNF. Taken together, this study characterizes the potential of ASCs to generate functional macrophages in vitro, and therefore paves way for their possible use in cell therapy applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.22299DOI Listing

Publication Analysis

Top Keywords

stem cells
16
mesenchymal stem
12
cells
10
tissue resident
8
resident mesenchymal
8
cells hematopoietic
8
hematopoietic
5
characterization hematopoietic
4
hematopoietic potential
4
mesenchymal
4

Similar Publications

Injectable DAT-ALG Hydrogel Mitigates Senescence of Loaded DPMSCs and Boosts Healing of Perianal Fistulas in Crohn's Disease.

ACS Biomater Sci Eng

January 2025

Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.

Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment.

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).

View Article and Find Full Text PDF

Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.

View Article and Find Full Text PDF

With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.

View Article and Find Full Text PDF

Scale-Up of Human Amniotic Epithelial Cells Through Regulation of Epithelial-Mesenchymal Plasticity Under Defined Conditions.

Adv Sci (Weinh)

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China.

Human amniotic epithelial cells (hAECs) have shown excellent efficacy in clinical research and have prospective applications in the treatment of many diseases. However, the properties of the hAECs and their proliferative mechanisms remain unclear. Here, single-cell RNA sequencing (scRNA-seq) is performed on hAECs obtained from amniotic tissues at different gestational ages and passages during in vitro culture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!