There is interest in using mature fine tailings (MFT) in reclamation strategies of oil sands mining operations. However, simulated runoff from different dried MFT treatments is known to have elevated levels of salts, toxic ions, and naphthenic acids, and alkaline pH and it is phytotoxic to the emergent macrophyte, common reed (Phragmites australis). Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) of the acidic species in the runoff confirmed that the distribution of oil sands naphthenic acids and associated oil sand acids was dependent on the MFT treatment. Furthermore, FT-ICR MS studies of the acidic species in hydroponic systems revealed that there was no plant-mediated change in the electrospray ionization mass spectra of the runoff. O(o)-containing species were prevalent (>90%), O(o)S(s) were predominant (<10% relative abundance), and O(o)N(n) were least abundant in all runoff water samples. O(o)S(s) species were predominant in all the samples investigated. The heteroatomic classes present in runoff water at greater than 1% relative abundance include: O(2)N(1), O(3)N(1), O(2), O(2)S(1) O(3), O(3)S(1), O(4), O(4)S(1), O(5), O(5)S(1), O(6), O(6)S(1), O(7), O(7)S(1), O(8) and O(8)S(1). Assuming the same response factor for all O(o) species, the O(4) class, presumably dicarboxylic acids, was generally more prevalent than the O(2) class in all samples. The O(2) class is indicative of classical naphthenic acids. However, dicarboxylic acids will form negative ions more readily than the monocarboxylic acids as there are two acidic hydrogens available for formation of these species.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.4658DOI Listing

Publication Analysis

Top Keywords

oil sands
12
mass spectrometry
8
simulated runoff
8
mature fine
8
fine tailings
8
naphthenic acids
8
acidic species
8
ultrahigh-resolution mass
4
spectrometry simulated
4
runoff
4

Similar Publications

Physicochemical Properties of Carbon Fiber Formulated from Melt-Spun Raw Asphaltene.

ACS Omega

December 2024

Department of Mechanical Engineering, University of Alberta, 116 St & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada.

One of the challenges in carbon fiber production centers around the high cost of raw materials required for fiber precursors or complex production processes involving multiple steps. This research paper delves into the utilization of asphaltene sourced from Alberta oil sands as an alternative precursor material that is low cost for carbon fiber production. We investigated the carbon fiber production process using a blend of different asphaltene types via melt-spinning technology.

View Article and Find Full Text PDF

Multifunctional aluminum alloy slippery liquid-infused surface with porous and boehmite nanoflower structure.

J Colloid Interface Sci

December 2024

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China. Electronic address:

The depletion of lubricants in (slippery liquid-infused porous surfaces) SLIPS poses a significant challenge to their long-term functionality. While line-shaped rough structures can mitigate lubricant loss to some extent, they often fail to provide the stability required for sustained performance. In this study, we present a novel porous nanoflower aluminum alloy slippery liquid-infused surface (P-NF-AA SLIPS), which integrates a porous framework with a rough nanoflower structure.

View Article and Find Full Text PDF

Treatment wetlands have emerged as a potential remediation option for oil-sands process affected waters (OSPW) which contains a suite of organic and inorganic constituents of potential concern. The aim of this study was to evaluate the fate of metals in a treatment wetland exposed to OSPW. Data was collected over three operational seasons testing freshwater and OSPW inputs at the Kearl Treatment Wetland in northern Alberta.

View Article and Find Full Text PDF

Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.

Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.

View Article and Find Full Text PDF

Preparation and Performance Evaluation of CO Foam Gel Fracturing Fluid.

Gels

December 2024

Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China.

The utilization of CO foam gel fracturing fluid offers several significant advantages, including minimal reservoir damage, reduced water consumption during application, enhanced cleaning efficiency, and additional beneficial properties. However, several current CO foam gel fracturing fluid systems face challenges, such as complex preparation processes and insufficient viscosity, which limit their proppant transport capacity. To address these issues, this work develops a novel CO foam gel fracturing fluid system characterized by simple preparation and robust foam stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!