Structural and thermal investigations of biomimetically grown casein-soy hybrid protein fibers.

Appl Biochem Biotechnol

Centre for Leather Apparel and Accessories Development, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai, India.

Published: January 2011

A hybrid protein fiber from different protein sources such as casein and soybean using wet-spinning technique was prepared. The casein/soybean hybrid fibers were synthesized at different weight ratios such as 100/0 (casein), 75/25, 50/50, 25/75, and 0/100 (soy) and characterized. Electron microscopic analysis confirmed the growth of pure and hybrid fibers and shows an increased surface roughness as the soy concentration increases in the hybrid fibers. Infrared spectra did not exhibit any significant changes in the functional groups between pure and hybrid fibers. X-ray diffraction pattern indicates slight increase in the diffraction peak values of hybrid fibers compared with the neat fibers. Thermal analyses show a moderate increase in the thermal stability of hybrid fibers when compared with the pure fibers. These results implicitly indicate that the casein and soy proteins are homogeneous in the hybrid fiber form. It has been demonstrated that the hybrid fiber with ≥50 wt.% casein content exhibits better morphology and increased thermal stability, which has scope for application in technical and medical industries.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-010-9034-9DOI Listing

Publication Analysis

Top Keywords

hybrid fibers
24
hybrid
10
fibers
9
hybrid protein
8
pure hybrid
8
fibers compared
8
thermal stability
8
hybrid fiber
8
structural thermal
4
thermal investigations
4

Similar Publications

Brown cotton and white cotton are two important raw materials used in the cotton fiber industry. Clarifying the differences in morphology, agronomic traits, and fiber pigments between these varieties can facilitate the implementation of corresponding cultivation and breeding techniques. Therefore, we obtained F generation brown cotton plants through hybridization and compared them with their parents.

View Article and Find Full Text PDF

Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release.

Discov Nano

January 2025

National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.

Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).

View Article and Find Full Text PDF

BiFusionPathoNet: fusion network for drug-resistant bacteria identification optical scattering patterns.

Anal Methods

January 2025

Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China.

The presented research introduces a new method to identify drug-resistant bacteria rapidly with high accuracy using artificial intelligence combined with Multi-angle Dynamic Light Scattering (MDLS) signals and Raman scattering signals. The main research focus is to distinguish methicillin-resistant (MRSA) and methicillin-sensitive (MSSA). First, a microfluidic platform was developed embedded with optical fibers to acquire the MDLS signals of bacteria and Raman scattering signals obtained by using a Raman spectrometer.

View Article and Find Full Text PDF

Paper mulberry is a fiber resource for paper making. Washi, a traditional paper in Japan, has been produced from × , a hybrid between and . Elite strains have been vegetatively propagated and distributed within Japan.

View Article and Find Full Text PDF

Photoacoustic imaging (PAI) is an emerging hybrid imaging technology that combines the advantages of optical and ultrasound imaging. Despite its excellent imaging capabilities, PAI still faces numerous challenges in clinical applications, particularly sparse spatial sampling and limited view detection. These limitations often result in severe streak artifacts and blurring when using standard methods to reconstruct images from incomplete data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!