Study Design: A total of 15 patients with lumbar disc herniation at the L5-S1 disc level who underwent microendoscopic discectomy were examined. The nerve root blood flow and electrophysiological values were measured during an intraoperative straight-leg-raising (SLR) test.

Objective: To investigate the relationships between nerve root blood flow changes and the electrophysiological values during an intraoperative SLR test.

Summary Of The Background Data: It is unknown how the electrophysiological values are affected by nerve root blood flow changes during an SLR test.

Methods: We measured S1 nerve root blood flow and electrophysiologically evaluated the nerve root using the compound muscle action potentials (CMAPs) from the gastrocnemius muscle after S1 nerve root stimulation during an intraoperative SLR test. Subsequently, we analyzed the relationships between the nerve root blood flow changes and the electrophysiological values.

Results: Before discectomy, there were sharp decreases in the nerve root blood flow after 1 and 3 minutes of the SLR test (P < 0.001), and the amplitudes of the CMAPs deteriorated significantly (P < 0.001). Significant correlations were found between the decrease ratio for the nerve root blood flow during the SLR test and the deterioration ratio for the amplitude of the CMAPs. After discectomy, the blood flow increased significantly (P = 0.001). When the SLR test was performed again, the blood flow showed no significant decreases. The average amplitudes of the CMAPs were significantly ameliorated (P < 0.01). When the SLR test was performed again, no significant differences were found for the average amplitudes after 1 and 3 minutes of the test.

Conclusion: Significant correlations were found between the decrease ratio for the nerve root blood flow and the deterioration ratio for the amplitude of the CMAPs. The present results demonstrate that temporary ischemic changes in the nerve root cause transient conduction disturbances.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BRS.0b013e3181ccb1d4DOI Listing

Publication Analysis

Top Keywords

nerve root
48
blood flow
44
root blood
36
slr test
20
electrophysiological values
16
nerve
12
root
12
flow changes
12
blood
11
flow
11

Similar Publications

Background: Magnetic resonance imaging (MRI) has not been routinely used for infants with brachial plexus birth injury (BPBI); instead, the decision to operate is based on the trajectory of clinical recovery by 6 months of age. The aim of this study was to develop an MRI protocol that can be performed without sedation or contrast in order to identify infants who would benefit from surgery at an earlier age than the age at which that decision could be made clinically.

Methods: This prospective multicenter NAPTIME (Non-Anesthetized Plexus Technique for Infant MRI Evaluation) study included infants aged 28 to 120 days with BPBI from 3 tertiary care centers.

View Article and Find Full Text PDF

Congenital scoliosis presenting in teenage years outcomes without hemivertebra excision.

Spine Deform

January 2025

Department of Orthopaedics, Spinal Deformity and Pediatric Orthopaedics, Billie and George Ross Center for Advanced Pediatric Orthopaedics and Minimally Invasive Spinal Surgery, Cohen Children's Medical Center, Northwell Hofstra School of Medicine, 7 Vermont Drive, Lake Success, NY, 11042, USA.

Purpose: In congenital scoliosis, the surgical strategy approach of hemivertebra excision, with or without instrumentation and fusion, is a common approach to correction of scoliosis. However, hemivertebra excisions are technically challenging, with potential complications including spinal cord injury, nerve root injury and cerebrospinal fluid leak. The purpose of this study was to determine whether correction of congenital scoliosis can be achieved using a posterior instrumentation/fusion-only approach without the need for hemivertebra excision.

View Article and Find Full Text PDF

Trigeminal nerve microstructure is linked with neuroinflammation and brainstem activity in migraine.

Brain

January 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.

Although the pathophysiology of migraine involves a complex ensemble of peripheral and central nervous system changes that remain incompletely understood, the activation and sensitization of the trigeminovascular system is believed to play a major role. However, non-invasive, in vivo neuroimaging studies investigating the underlying neural mechanisms of trigeminal system abnormalities in human migraine patients are limited. Here, we studied 60 patients with migraine (55 females, mean age ± SD: 36.

View Article and Find Full Text PDF

Background: One-hole split endoscopy (OSE) is a novel endoscopic technique that offers some advantages in spinal surgery. However, without a clear understanding of the safe zone for OSE, surgeons risk injuring nerve roots during the procedure. This study aimed to measure the safe distances among critical bone markers, the intervertebral space and nerve roots between 1-degree degenerative lumbar spondylolisthesis (DLS) and non-DLS at the L segment in patients via three-dimensional reconstruction and to compare the differences in relevant safety distances between the two groups.

View Article and Find Full Text PDF

Preclinical and clinical studies have established that autoreactive immunoglobulin G (IgG) can drive neuropathic pain. We recently demonstrated that sciatic nerve chronic constriction injury (CCI) in male and female mice results in the production of pronociceptive IgG, which accumulates around the lumbar region, including within the dorsal root ganglia (DRG) and spinal cord, facilitating the development of neuropathic pain. These data raise the intriguing possibility that neuropathic pain may be alleviated by reducing the accumulation of IgG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!