Nitrite-hemoglobin reactions have been studied extensively in vitro, but there is a lack of information on the kinetics of nitrite and its metabolites in humans. In this study, we developed a nine-compartment physiological pharmacokinetic model to describe the in vivo erythrocytic uptake and release and disposition pathways of nitrite, nitrate, methemoglobin, and iron-nitrosyl hemoglobin in the human circulation. Our model revealed that nitrite entered erythrocytes rapidly with a rate constant of 0.256 min(-1) (i.e., half-life = 2.71 min). The formation of iron-nitrosyl hemoglobin from nitrite, which involves the reduction of nitrite by deoxyhemoglobin to generate nitric oxide (NO) and reaction of NO with deoxyhemoglobin to form iron-nitrosyl hemoglobin, occurred rapidly as well (k = 2.02 min(-1); half-life = 0.343 min = 21 s). The disposition kinetics of methemoglobin was complex. Nitrate formation occurred primarily in erythrocytes through the nitrite-oxyhemoglobin reaction and was higher when nitrite was administered intra-arterially than intravenously. Nitrate reduction was an insignificant metabolic pathway. This study is the first to comprehensively evaluate the kinetics of nitrite and its metabolites in humans and provides unique insights into the rapid equilibrium of nitrite into erythrocytes and conversion to NO in the red cell, which is kinetically associated with vasodilation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957169 | PMC |
http://dx.doi.org/10.1124/dmd.110.034355 | DOI Listing |
Int J Mol Sci
June 2024
Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia.
Nitrosyl iron complexes are remarkably multifactorial pharmacological agents. These compounds have been proven to be particularly effective in treating cardiovascular and oncological diseases. We evaluated and compared the antioxidant activity of tetranitrosyl iron complexes (TNICs) with thiosulfate ligands and dinitrosyl iron complexes (DNICs) with glutathione (DNIC-GS) or phosphate (DNIC-PO) ligands in hemoglobin-containing systems.
View Article and Find Full Text PDFInt J Mol Sci
April 2024
Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland.
Animal tumors serve as reasonable models for human cancers. Both human and animal tumors often reveal triplet EPR signals of nitrosylhemoglobin (HbNO) as an effect of nitric oxide formation in tumor tissue, where NO is complexed by Hb. In search of factors determining the appearance of nitrosylhemoglobin (HbNO) in solid tumors, we compared the intensities of electron paramagnetic resonance (EPR) signals of various iron-nitrosyl complexes detectable in tumor tissues, in the presence and absence of excess exogenous iron(II) and diethyldithiocarbamate (DETC).
View Article and Find Full Text PDFJ Vis Exp
February 2022
Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital; Harvard Medical School;
Nitric oxide (NO) activity in vivo is the combined results of its direct effects, the action of its derivatives generated from NO autoxidation, and the effects of nitrosated compounds. Measuring NO metabolites is essential to studying NO activity both at vascular levels and in other tissues, especially in the experimental settings where exogenous NO is administered. Ozone-based chemiluminescence assays allow precise measurements of NO and NO metabolites in both fluids (including plasma, tissue homogenates, cell cultures) and gas mixtures (e.
View Article and Find Full Text PDFInt J Mol Sci
December 2021
Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia.
Dinitrosyl iron complexes (DNICs) are a physiological form of nitric oxide (NO) in an organism. They are able not only to deposit and transport NO, but are also to act as antioxidant and antiradical agents. However, the mechanics of hemoglobin-bound DNICs (Hb-DNICs) protecting Hb against peroxynitrite-caused, mediated oxidative modification have not yet been scrutinized.
View Article and Find Full Text PDFBull Exp Biol Med
September 2021
K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia.
In a relatively isolated system of avian embryo, the metabolism of NO, a component of the dinitrosyl iron complexes (DNIC), the main NO donor in most tissues, depends on the ligands that make up the complex. This fact corroborates the earlier hypothesis that these ligands perform a regulatory function in NO metabolism. It is also shown that nitrite injected into the embryo is not oxidized to nitrate like NO in DNIC, but is accumulated outside the amniotic sac.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!