FACT plays important roles in both gene transcription and DNA replication. However, how this protein complex is targeted to these two distinct cellular processes remains largely unknown. Here we show that ubiquitylation of the Spt16 subunit of FACT by Rtt101, the cullin subunit of an E3 ubiquitin ligase in Saccharomyces cerevisiae, links FACT to DNA replication. We find Rtt101 interacts with and ubiquitylates Spt16 in vitro and in vivo. Deletion of RTT101 leads to reduced association of both FACT and the replicative helicase MCM with replication origins. Loss of Rtt101 also reduces binding of FACT to MCM, but not the association of FACT with Leo1 and Spt5, two proteins involved in transcription. Origin function is compromised in cells lacking Rtt101 or with an Spt16 mutation. These findings identify Spt16 as an Rtt101 substrate, and suggest that Spt16 ubiquitylation is important for FACT to function during DNA replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904938PMC
http://dx.doi.org/10.1101/gad.1887310DOI Listing

Publication Analysis

Top Keywords

dna replication
16
ubiquitylation fact
8
fact
8
fact dna
8
association fact
8
rtt101
7
replication
5
spt16
5
fact cullin-e3
4
cullin-e3 ligase
4

Similar Publications

Chronically persistent viruses are integral components of the organismal ecosystem in humans and animals . Many of these viruses replicate and accumulate within the cell nucleus . The nuclear location allows viruses to evade cytoplasmic host viral sensors and promotes viral replication .

View Article and Find Full Text PDF

Changes in the copy number of large genomic regions, termed copy number variations (CNVs), contribute to important phenotypes in many organisms. CNVs are readily identified using conventional approaches when present in a large fraction of the cell population. However, CNVs that are present in only a few genomes across a population are often overlooked but important; if beneficial under specific conditions, a de novo CNV that arises in a single genome can expand during selection to create a larger population of cells with novel characteristics.

View Article and Find Full Text PDF

Unlabelled: Chronic Hepatitis B (CHB) remains a major public health problem, leading to various complications such as liver fibrosis, cirrhosis, and hepatocellular carcinoma. The existing diagnostic markers for Hepatitis B virus (HBV) are limited in distinguishing different CHB phases and intra-hepatic viral replication activity. In the past few years, several non-invasive potential blood markers that reflect viral intra-hepatic replicative state more accurately have been in progress and are gaining importance.

View Article and Find Full Text PDF

Functional conservation and divergence of arabidopsis VENOSA4 and human SAMHD1 in DNA repair.

Heliyon

January 2025

Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.

The human deoxyribonucleoside triphosphatase (dNTPase) Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) has a dNTPase-independent role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Here, we show that VENOSA4 (VEN4), the probable ortholog of SAMHD1, also functions in DSB repair by HR. The loss-of-function mutants showed increased DNA ploidy and deregulated DNA repair genes, suggesting DNA damage accumulation.

View Article and Find Full Text PDF

Cloning methods are fundamental to synthetic biology research. The capability to generate custom DNA constructs exhibiting predictable protein expression levels is crucial to the engineering of biology. Golden Gate cloning, a modular cloning (MoClo) technique, enables rapid and reliable one-pot assembly of genetic parts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!