Heterochromatin is typically highly condensed, gene-poor, and transcriptionally silent, whereas euchromatin is less condensed, gene-rich, and more accessible to transcription. Besides acting as a graveyard for selfish mobile DNA repeats, heterochromatin contributes to important biological functions, such as chromosome segregation during cell division. Multiple features of heterochromatin-including the presence or absence of specific histone modifications, DNA methylation, and small RNAs-have been implicated in distinguishing heterochromatin from euchromatin in various organisms. Cells malfunction if the genome fails to restrict repressive chromatin marks within heterochromatin domains. How euchromatin and heterochromatin territories are confined remains poorly understood. Recent studies from the fission yeast Schizosaccharomyces pombe, the flowering plant Arabidopsis thaliana, and the filamentous fungus Neurospora crassa have revealed a new role for Jumonji C (JmjC) domain-containing proteins in protecting euchromatin from heterochromatin marks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904936 | PMC |
http://dx.doi.org/10.1101/gad.1941010 | DOI Listing |
New Phytol
January 2025
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany.
The epigenetic state of chromatin, gene activity and chromosomal positions are interrelated in plants. In Arabidopsis thaliana, chromosome arms are DNA-hypomethylated and enriched with the euchromatin-specific histone mark H3K4me3, while pericentromeric regions are DNA-hypermethylated and enriched with the heterochromatin-specific mark H3K9me2. We aimed to investigate how the chromosomal location affects epigenetic stability and gene expression by chromosome engineering.
View Article and Find Full Text PDFUnlabelled: Compartmentalization of the nucleus into heterochromatin and euchromatin is highly conserved across eukaryotes. Constitutive heterochromatin (C-Het) constitutes a liquid-like condensate that packages the repetitive regions of the genome through the enrichment of histone modification H3K9me3 and recruitment of its cognate reader protein Heterochromatin Protein-1 (HP1a). The ability for well-ordered nucleosome arrays and HP1a to independently form biomolecular condensates suggests that the emergent material properties of C-Het compartments may contribute to its functions such as force-buffering, dosage-dependent gene silencing, and selective permeability.
View Article and Find Full Text PDFAdv Biol (Weinh)
January 2025
School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
Triple-negative breast cancer (TNBC) is the most lethal and aggressive breast cancer among all the breast cancer subtypes. Despite several attempts, to date, there is an extensive lack of therapeutic intervention. Hence, there is a dire need for an effective biomarker to timely diagnose TNBC.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA.
The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.
View Article and Find Full Text PDFbioRxiv
December 2024
Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
The centromere effect (CE) is a meiotic phenomenon that ensures meiotic crossover suppression in pericentromeric regions. Despite being a critical safeguard against nondisjunction, the mechanisms behind the CE remain unknown. Previous studies have shown that various regions of the pericentromere, encompassing proximal euchromatin, beta and alpha heterochromatin, undergo varying levels of crossover suppression, raising the question of whether distinct mechanisms establish the CE in these different regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!